
Analysis and Design of Java Compression Offload

on the IBM Hybrid Platform

Thesis

Wilhelm-Schickard-Institute for Informatics

 Eberhard-Karls-University Tübingen

 Author:

 Huiyan Roy

 Gartenstr. 11

72213 Altensteig

Email: hroy@de.ibm.com

31.07.2008

Supervisor (University Tübingen)

Prof. Dr. Wilhelm Spruth

Wilhelm-Schickard-Institut for Computer Science

Technical Informatics

Sand 13

72076 Tübingen

Germany

Supervisor (IBM Deutschland Entwicklung GmbH)

Roland Seiffert, Jochen Roth

IBM Systems & Technology Group

Systems Software Development

Schönaicher Str. 220,

71032 Böblingen

Germany

Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig und nur mit den angegebenen

Hilfsmitteln verfasst habe und alle verwendeten Inhalte aus anderen Quellen als solche

kenntlich gemacht habe.

I hereby declare that the work presented in this thesis has been conducted independently and

without any inappropriate support and that all sources of information, be it experimental or

intellectual, are aptly referenced.

Tübingen, 31st July, 2008 __________________________

Signature

2

Acknowledgment

Acknowledgment

First and foremost, I wish to express my deep appreciation and gratitude to Prof. Dr. Wolfgang

Rosenstiel, Prof. Dr. Wilhelm G. Spruth and Dr. Peter Hans Roth for making it possible for me

to work on this interesting and challenging thesis. Without their dedication, conviction,

passion and steadfastness in bringing an extensive cooperation between the lab and University

Tübingen into reality, this project wouldn't have come about. I wish this thesis to symbolize

the fruit of their efforts.

I would like to express my sincere thanks to the IBM supervisors Roland Seiffert and Jochen

Roth for mentoring, for giving guidance and sharing ideas that were so precious to me. Thanks

Jochen for your time and so much practical help whenever I needed it.

Thanks to my dear husband Gaetan, for being supportive and for analyzing problems together

with me at crucial times which was a source of inspiration. Thanks for the cooking when I had

to come back so late.

Also thanks to all the others that have given me help during this thesis. It has been such a joy

to get to know all of you.

And my thanks to my Heavenly Father which will be transfered to Him in another format.

3

Acknowledgment

Executive Summary

The Java package java.util.zip provides classes for reading and writing the standard ZIP and

GZIP file formats. In certain situations, this compression and decompression require a

significant portion of the overall CPU capacity. This thesis analyzes a given Java workload on

System z that heavily uses compression and proposes a design that leverages network-

connected Cell/B.E. servers to perform the actual compression task, thus offloading these CPU

cycles from the System z. To realize this, the server takes a Cell version GZIP compression

utility as a library tool and optimizes its data access for better performance. This design is

implemented prototypically by having client-side Java programs communicating with the Cell

blade server. After evaluating their efficiency at different compression volumes, it

demonstrates that this offload implementation is successful and well-profitable for System z.

4

Executive Summary

Table of Contents

Acknowledgment...3

Executive Summary...4

Table of Contents...5

1. Introduction..7

1.1. IBM System z in a Hybrid Platform..7

1.2. Purpose of Thesis...9

1.3. Structure of Thesis...9

2. Java Compression Offload Background..11

2.1. Cell Processor..11

2.1.1. Cell Processor Isn't Just for Games..11

2.1.2. Cell and the “Three Challenges”..12

2.1.3. Cell/B.E. Architecture..14

2.1.4. Cell Programming..16

2.1.5. Linux on Cell...17

2.1.6. The Cell Blade..18

2.2. Linux on System z...18

2.3. Games on System z..19

2.3.1. Project Gameframe..19

2.3.2. MMOG Games Requirements..20

2.3.3. Cell Blade and System z: A Perfect Hybrid Platform..22

2.4. Hardware Compression Mechanism of System z..22

3. Architecture and Compression Library..25

3.1. System Architecture...25

3.2. Zlib Library and the Deflate Algorithm...26

5

Table of Contents

3.2.1. Background..26

3.2.2. Deflate Algorithm..26

3.2.3. Gzip File Format Specification RFC 1952..28

3.3. The Zlib Library Optimized for the Cell Processor...30

3.3.1. Introduction..30

3.3.2. Optimization Analysis..31

4. Program Analysis...34

4.1. System environment...34

4.2. Modification of Georgia-zlib for Offload..34

4.2.1. Interface and File I/O...34

4.2.2. SPE Thread Adaption...35

4.2.3. Workflow and Other Modifications...36

4.3. Networking through Sockets..37

4.3.1. Background Information of Socket Programming...37

4.3.2. Cell/B.E. Server Program...38

4.4. CellDeflater and CellInflater for Java Client...41

5. Efficiency Evaluation..43

5.1. Compression with Java.util.zip..43

5.2. Compression with Cell/B.E. Server...45

5.2.1. Compression Time Components..45

5.2.2. Cell Server Total Time ..46

5.2.3. Java Client Time...47

5.3. Comparison and Conclusion..48

6. Outlook..50

A. Appendix...51

A.1 Source Index..51

A.2 Table Index...54

A.3 Graph Index..55

A.4 Abbreviations and Definitions...56

6

Table of Contents

1. Introduction

1.1. IBM System z in a Hybrid Platform

In today's world, Information Technology is woven into every aspect of our lives. The demand

for robust, efficient, flexible and autonomic computer systems are greater than ever, driving us

to develop more secure, scalable and stable computer systems with even higher performance.

The mainframe computers of IBM stand firmly as the number one computer system solutions

ever since their inception a half a century ago, taking a unique roll serving various needs

around the world.

Mainframe computer systems are most often used by large and middle-sized organizations

which impose high specifications for their critical applications, that is, applications with a

need for high availability, scalability, security or applications that have been running

faultlessly since centuries, that hold a high market value and that are not to be replaced.

Failure to meet these requirements would essentially result in a loss of market as well as a loss

of customers. These requirements are thus significant and usually decisive to the fate of an

organization and therefore never to be underestimated.

A good example is the applications of a bank. It requires a technology-based system that is one

hundred percent secure, that remains stable at all times that never makes a mistake, thereby

avoiding those situations which a normal computer system often fails at. These requirements

have their reasons: A bank has to handle a high amount of data transactions on a daily basis

like the on-line queries of their many clients, drawing money at a bank machine, doing a wire

transfer, paying at the supermarket or banking via Internet. These transactions and queries

must be executed one hundred percent correctly and often need to be accomplished in real-

time. The system should be able to foresee, recognize and also handle these tasks during peak

7

1. Introduction

times, for example before Christmas or during holidays, taking corrective measures like

distributing the workload to other machines horizontally or vertically to ensure quality of

service. Since some system tasks are more critical than others, the system should be able to

handle these based on task priorities. Some work is to be done within milliseconds, some

within seconds, others within minutes and some other non-critical jobs within a day or two.

As globalization is bringing the world closer together, the machine can not anymore take its

official “night break” as it did years before and has to practically run all 24 hours of the day, 7

days a week. A machine like this needs to manage many maintenance tasks without having to

be shut down. The work of software installation, system updates and backups should be

accomplished when the system is “live” at work. Meeting these requirements demands much

know-how and a high sophistication of the built-in mechanism.

The IBM System z computers fulfill and offer thought-through solutions for these

requirements. These machines are highly reliable and practically never need to be shut down,

not even during an operating system installation. Once correctly configured, the system stays

extremely secure under the safeguard of its unique hardware architecture and the protection of

its comprehensive software mechanisms. The built-in workload management provides

constant monitoring in order to achieve performance goals. Through defining system policies,

the decision maker of an organization can configure the system to reflect the requirements of

the organization. System z supports strict backward compatibility to the System/360

generation. Old applications that ran on a 360 machine decades ago can flawlessly run on the

newest generation of System z, which is, at the moment this article is written, z10 (also called

eClipz). A System z can run a diversity of operating systems and share data amongst each

other as members of the same body. A single System z machine is therefore able to replace

many smaller servers providing higher scalability and reliability and saving operational costs.

At energy prices soaring, System z also stands out as a green solution by using energy more

efficiently. According to a Robert Frances Group study, a company analyzed the consolidation

of hundreds of UNIX servers to one System z mainframe. The calculations showed monthly

power costs of $30,165 for the UNIX servers versus $905 for System z. That company

8

1. Introduction

calculated they would save over $350,000 in power costs annually [z01].

The only disadvantage of a System z is that its CPU cycles are relatively expensive. Due to the

sophistication of hardware and software behind it, computation on a System z can never be

priced as low as the less well-equipped server systems. Through introducing simplified CPU

models of ZAAPs, ZIIPs, IFLs, etc., hosting on System z is not as expensive as before. It is

however still too costly for smaller sized companies, although some would achieve higher

efficiency by utilizing IBM technology. Dedicated to solve this problem, the hybrid system

has come into being which allows some less expensive co-systems to be combined with z,

taking over part of its off-loadable computation. Cell, AMD and Intel processors are all

candidates for an accelerator system. Through moving some compute-intensive workloads

onto the Cell blade systems, the IBM hybrid system can achieve a higher scalable performance

and offer a more affordable price.

1.2. Purpose of Thesis

The purpose of this thesis is to analyze the feasibility and effectiveness of such an offload

system using the Java compression mechanism. Java compression and decompression can in

certain situations cause cause significant CPU load. A co-system that offloads the compression

cycles of System z should help to achieve a better general performance. This thesis analyzes

the feasibility of an offloading concept, proposes a design and then evaluates the efficiency of

the design.

1.3. Structure of Thesis

Chapter two offers a short introduction of the Cell processor, the Cell/B.E. structure and its

programming concepts. It also takes a glance at the IBM Cell blade and Linux on the Cell

operating system that build up the test environment of the offload design. It then looks into

the requirements of on-line gaming and proposes the hybrid system solution by illustrating the

necessity of the compression offloading concept. It furthermore explains the reason, why

hardware based compression offloading is not appropriate.

9

1. Introduction

Chapter three introduces the widely used open source zlib library, its algorithms, data format

and efficiency. It also introduces the gzip utility implementing a zlib version that is optimized

for the Cell processor.

Chapter four analyzes the necessity and ways of further optimization of the gzip utility for the

offload purpose and describes its workflow. It implements the hybrid design prototypically,

the client and server communicating through the network socket pairs. Furthermore it

illustrates the key points of the programming code on both sides of the system.

Chapter five evaluates the efficiency of the socket design at different compression volumes

and compares them with Java's original compression performance. It concludes that this is a

well-profitable hybrid design for offloading purpose.

Chapter six gives an overview how the results of this thesis could be used for further research

endeavors.

10

1. Introduction

2. Java Compression Offload Background

2.1. Cell Processor

2.1.1. Cell Processor Isn't Just for Games

The Cell processor was jointly developed by the “STI” design center, an alliance between

Sony Computer Entertainment, Toshiba and IBM. The project was originally designed to

bridge the gap between the desktop processors (like AMD's Athlon64, Intel's Core 2, etc) and

the high-performance processors that are most widely used in scientific applications. The Cell

processor has taken even more of the world programmers' attention ever since the PlayStation

3 (commonly abbreviated PS3) was launched in November 2006, the third generation of the

home video game console from Sony. The Cell processor is however not only good for games.

Its special architecture makes it an outstanding processor for running compute-intensive tasks.

MPR Analysts’ Choice Award rated the Cell processor in its Microprocessor Report1 [cell01]

as the “Best High-Performance Embedded Processor of 2005” :

“We chose the Cell BE as the best high-performance embedded processor of

2005 because of its innovative design and future potential.... ”

One of Forbes' articles in January 2006 titled “Holy Chip” wrote [cell02]:

“IBM's radical Cell processor, to debut in Sony's PlayStation 3, could reshape

entertainment and spark the next high-tech boom... Cell could power hundreds

of new apps, create a new video- processing industry and fuel a multi-billion-

dollar build out of tech hardware over ten years.”

IEEE Spectrum's special issue “Winners and Losers 2006” wrote [cell03]:

1 Magazine Microprocessor Report is a premiere reference material for detailed explanations and in-depth
knowledge of new high-performance microprocessors.

11

2. Java Compression Offload Background

“It was originally conceived as the microprocessor to power Sony's PS3, but it is

expected to find a home in lots of other broadband-connected consumer items and

in servers too.”

The Cell processor has ever since been spreading rapidly in a growing range of computing

areas. Industry foresees the Cell processor playing a role in mobile phones, high-definition

digital televisions (HDTV), hand-held video players and more. Stanford University is

building a Cell-based supercomputer. Cell is also utilized in military missile systems and in

medical imaging machines. The IBM's QS series Blade Server utilizes two Cell processors

jointly working with each other - the newest market version QS22 has just been released in

May 2008. The most recent news of Cell’s application is in IBM's supercomputer Roadrunner,

a hybrid design with 12,960 Cell processors and 6,480 AMD Opteron dual-core processors. It

reaches a peak performance of 1.7 petaflops and stays at the top of the TOP500 list [cell08].

2.1.2. Cell and the “Three Challenges”

Stanford's Professor Bill Dally has a nice analogy that explains the memory wall problem that

general purpose processors have run into. He lets you imagine that you are doing a plumbing

project. As you start the work, you notice that you need a pipe. So you drive to the store and

buy the pipe. Once back with the pipe, you discover you need a fitting. So you drive to the

store again and purchase a fitting. Then you discover that you also need to solder both

together... This wasn't such a problem 30 years ago as reading the memory only cost several

processor cycles. But nowadays reading main memory costs much more as it can take up to

hundreds of processor cycles, so reading memory is becoming more like driving hours to buy

one thing at a plumbing store.

Although the conventional processors try to solve the above problem with cache, they cannot

avoid the situation that a cache miss happens. In this case the CPU stalls and has to wait for

the data to be fetched. At each stall the processor waste hundreds of cycles. The result of this

architecture is that application performance is in most cases limited by memory latency rather

than by peak compute capability. Statistics show that the processor can spend up to 80% of its

12

2. Java Compression Offload Background

time waiting for memory. The problem gets worse with the dual-core CPUs. When the cores

try to access the same memory address, the data in the cache gets out of date and needs to be

updated. To do this involves a lot of logic, takes a lot of time and the more cores the system

has, the more complicated the problem will get.

The Cell processor solves this problem by making something like a shopping list. Each SPE

(Synergistic Processing Element) is equipped with a series of cache-like Local Stores. Instead

of getting data from main memory every time it is needed, the SPUs (Synergistic Processing

Unit) construct a list of the needed information and go get the data from the main memory

through DMA transfer all at once. The processors can then be kept working as much as

possible. The SPE processor cannot access the main memory directly. This avoids applying

the complexity of the caching mechanism and delivers data to the SPE registers at an

extremely high speed, making the data to be processed at a cache speed inside a SPE. The

three-level data transfer of register file, local store and the main storage with its asynchronous

DMA transfers between the local store and the main storage is a major breakthrough in

processor architecture, resulting in the extreme parallelization of computation and data

transfer. The challenge left to the programmer is to feed the SPEs with enough data to achieve

peak performance.

The above was one of the “Three Challenges” that confronted the developers of the Cell

processor. The other two main challenges of the chip development were the power wall and

frequency limitation. To achieve high processing power, the engineers could have typically put

more transistors on the chip, resulting in a heat increase. The Cell engineers solved the

problem by allocating different functions to the processors. Power efficiency was improved

instead of increasing the complexity of the hardware. A general-purpose PPE (Power

Processor Element) runs the operating system while eight special SPEs run the compute-

intensive tasks. They developed specially adapted software tools like more intelligent

compilers (gcc, XLC), so that the burden to the chip hardware could be reduced.

To conquer the frequency wall problem, a combination of hardware and software optimization

13

2. Java Compression Offload Background

was applied. The Local Store of a SPU allows large shared register files which increase the

processing speed significantly. More software controlled branching was built in which made

deeper pipelines possible.

The efforts bring out good results. The Cell processor achieves approximately ten times the

peak performance of a conventional processor that uses up the same amount of power. As to

the actual application performance, some applications benefit less from the SPEs while some

others show a performance increase of more than 10 times. In general, compute-intensive

applications that use 32-bit or smaller data formats are the most suitable candidates for the

Cell BE and can expect higher performance on the Cell.

2.1.3. Cell/B.E. Architecture

The Cell processor's unique structure is the contributive factor that enables the PPE's intensive

relationship with the SPEs thereby delivering high performance for number-crunching tasks,

like Fourier analysis, decoding and encoding of stream processing, real time ray tracing, etc.

All these tasks require a huge amount of calculation and a certain supercomputing

characteristic of the processor.

The Cell processor is composed of one 64 bit PPE and eight specialized co-processor SPEs.

The PPE is a conventional power architecture core, for example it could be a PowerPC or

other POWER processors. The PPE is good at running control-intensive tasks and quick at

task switching and is usually used to run the operating system and most of the organizational

work of an application. The PPE contains a PPU for calculation, an L1 cache for data and

instruction and an L2 cache memory. SPEs, the SIMD processors of the Cell, are built to carry

out intensive mathematical work. SIMD stands for Single Instruction Multiple Data, indicating

SPE's capability of doing multiple operations simultaneously with a single instruction. An SPE

consists of the SPU, the Local Store, and the MFC (Memory Flow Controller). The Local

Store is a 256 KB on-chip memory that allows the local storage of data. MFC works as a

gateway taking care of the communication between SPE and the other elements on the chip.

Each SPU processor contains a dedicated DMA management queue capable of scheduling

14

2. Java Compression Offload Background

long sequences of data transfer between various endpoints without interfering with the SPU's

computations. Furthermore the Cell/B.E. structure has a BIC (Bus Interface Controller) that

takes control to all the i/o devices and a MIC (Memory Interface Controller) that supports two

memory channels.

Elements are connected together with an internal high speed bus EIB (Element Interconnect

Bus) and work intensively together like a small cluster of processors inside the chip.

EIB is implemented as a circular ring with four 128 bit unidirectional channels. Each

participant of the bus has a read port and a write port which allow a point to point

communication that is easy to scale. EIB is optimized for transferring huge data streams.

This unique architecture of the Cell processor is named Cell/B.E., an abbreviation for Cell

Broadband Engine and is illustrated in the following depiction:

 Graph 1: Cell Broadband Engine Architecture

 Source: J. A. Kahle, Cell Broadband Engine Architecture [g01]

15

2. Java Compression Offload Background

The Cell processor's special structure contributes to its incredible data processing

performance. The introductory design of 90 nanometer technology is able to reach a peak

processing speed of over 200 billion floating point operations (200 Gflops) per second in

comparison to 26 Gflops for a Pentium 4 and 77 Gflops for a XBox 360 [cell02]. IBM

announced in 2007 the production of 65 nanometer version of Cell BE and in Feburary 2008

the production of 45 nanometer version. At 45nm the Cell processor will reach the processing

speed of one teraflop per second.

2.1.4. Cell Programming

A typical programmer basically has two kinds of situations when starting a Cell project. One is

when he wishes to write a completely new application to run on the Cell processor; the other

is, as is more often the case, when he has an existing application that runs on a PowerPC

architecture core and wants to bring that application onto the Cell, thereby needing to rewrite

part of the code in order to take advantage of the Cell's SIMD capabilities. Both situations

require a detailed analysis of his code in order to identify where the compute-intensive

repetitive tasks are and which of those could be offloaded onto SPEs. Too large algorithms or

algorithms which jump randomly, accessing small pieces of data are not suitable to run on the

SPEs. Vectorizable and parallelizable algorithms are in contrast well suited for them. Once this

is figured out, he can start writing the code for the PPE and the SPE separately, or in the

second situation, partition the movable code for the SPEs from the rest and move this over.

The partitioning usually means quite some work and requires the year-long experience of a

programmer. This is the so-called PPE-centric model, the most often used model for

partitioning an application, with the main application running on the PPE and individual tasks

off-loaded to the SPEs. The PPE then expects and coordinates the results returned from the

SPEs. The tasks distributed to the SPEs could be multistage-pipelined, parallel-pipelined or

service-oriented. In the multistage-pipelined model, one SPE's working result is sent to the

next SPE stage to be processed and the SPE at the end of the stage completes the calculation

circle and sends the final result to the PPE. In the parallel-pipelined model, the working data is

divided into similar sizes and sent to the SPEs that all implement the same algorithms to

16

2. Java Compression Offload Background

process the data. Each SPE's output will be returned to the PPE, which is responsible to

reconstruct the data in the right order. In the service oriented model, each SPE implement a

different algorithm as their unique services and the PPE alone is responsible to the SPEs'

returned data. The PPE-centric model is most suitable for an application working with

streamed data with a need of parallel computation.

Another less often used model is the SPE-centric model where most of the application’s code

is distributed among the SPEs. The PPE acts as a centralized resource manager. Each SPE

fetches its next working item from the main storage (or its own local store) after completing

its current work. This model is suitable for applications that need little organization from the

PPE.

The SPEs are designed to be programmed in high-level languages, such as C/C++. They

support a rich instruction set that includes extensive SIMD functionality. However, using

SIMD data types is not mandatory - a rich set of language extensions that define C/C++ data

types for SIMD operations are also available for the programmers. These extensions allow

them great control over code performance, without having to deal with the complexity of

assembly language.

A rife development environment already exists for Cell programming Beside code

development tools, there are debug tools, performance tools and miscellaneous tools like the

IDL Compiler. There is an SPE Management Library that supports creating and destroying

SPE threads and regulating them for inter-thread communication. There is also a hypervisor

available that allows different operating systems to run as different partitions on the same Cell

hardware. A system simulator is available which facilitates code development without Cell

hardware.

2.1.5. Linux on Cell

Several versions of the Linux operating systems have already been brought to the Cell

17

2. Java Compression Offload Background

processor, RPM2 based Fedora distribution amongst others. The Linux operating system has a

built-in socket interface that enables the Cell system's networking with other computers based

on the TCP/IP stack. Sockets communication on this level is fast and uncomplicated and it is

the most preferable networking solution for a system whenever performance becomes a

critical factor. Other ways of communication are also available for the Cell. On the higher

layers of the ISO/OSI model, RPC (Remote Procedure Call), RMI (Remote Method

Invocation) etc. can also be implemented depending on the system requirement. More on this

will be found in Chapter four.

2.1.6. The Cell Blade

Since the introduction of the first Cell blade server QS20 in 2005, the Cell based blades have

now reached their third generation. The experiments of this thesis were carried out on the

second generation Cell blade QS21. Here is a brief overview of its key hardware features:

• two 3.2 GHz Cell/B.E. processors

• 2 GB XDR memory (1 GB per processor)

• two Gigabit Ethernet ports

• one high-speed expansion slot for two additional ports for 10Gigabit Ethernet or
InfiniBand 4X

• InfiniBand adapter

2.2. Linux on System z

System z is the most trustworthy computing system to date. An increasing number of

organizations are adopting the technology, many Linux environment users amongst others.

Linux on System z is a big defender of Linux's open source values and the code is completely

open to users under the GNU GPL (GNU General Public License). It is considered the leading

driver that encourages adoption of the Linux environment among business and governments.

Linux on z combines the advantages of System z with the flexibility of the Linux operating

system, building a scalable, secure, highly available and cost-effective structure. It further

2 RPM stands for RPM Package Manager, a package management system originally developed by Red Hat Linux,
now widely used in different Linux distributions.

18

2. Java Compression Offload Background

helps to simplify the IT infrastructure which again reduces operating costs and promotes

quicker deployment of new solutions to accelerate time to market. The less expensive hosting

on z/Linux is achieved mainly through applying the much lower-priced IFL (Integrated

Facility for Linux) processors dedicated to running Linux. Comparing with the traditional

general purpose engines – the CPs (Central Processors), IFL has a simplified structure and is

optimized for the Linux operating system.

2.3. Games on System z

2.3.1. Project Gameframe

In April 26, 2007 IBM announced a cross-company project “Gameframe” cooperated together

with the Brazilian game developer Hoplon Infotainment. Hoplon is a leading developer of

multi-player on-line games implementing complex real-world simulations. The project’s aim

was to bring Hoplon's online science fiction massive social game - Taikodom to run under a

hybrid system of z leveraged network-connected Cell/B.E..

 Graph 2: Massive Social Game Taikodom from Brazilian company Hoplon

Source: Jochen Roth, IBM, Nov. 2007. Gameframe_4AcademicDays_20071106.ppt [g03]

19

2. Java Compression Offload Background

2.3.2. MMOG Games Requirements

The number of players of MMOG (Massive Multi-player On-line Game) has been growing

exponentially in the past ten years, reaching a registered number of 13 million. Taikodom, one

of the MMOG games, also foresees a fast growth. The game simulates a virtual world of outer

space with gamers playing with each other in order to fulfill certain missions under a

persistent online environment. The gamers practice real-time interaction with each other and

are actually playing the game “together” from their home client terminal. All MMOG games

impose the following high demands on its server environment:

Requirement 1 - Real-time interaction and massive I/O throughput: As there are thousands of

gamers connected by the Internet who interact with each other through the server-based

service, there is an extremely high amount of data being sent back and forth between the two.

Even though the data is usually compact, the huge number of players cumulates in an equally

huge amount of data. Due to the user’s relatively low connection rate, the data is often first

compressed at the local client level before it is sent to the server. The server therefore needs to

decompress this before analysis can occur. Compression and decompression in this case

reduce transfer time and help to improve system performance. The data analysis of the server

consists mainly in evaluating the progress according to user input and calculating the

interaction between the gaming users. The results are returned compressed to the client and the

client program displays it uncompressed at its terminal graphically. The more players are

involved in a game, the more voluminous the computation becomes and the more difficult it is

to display the interaction in real-time. A game will not attract more gamers when noticeable

latency begins to show up. The server's ability to handle the requirements of its gamers

becomes the vital factor of its success.

Requirement 2 - On-demand scalability: Even if a server system can easily handle the peak

amount of gamers today, it is already confronted with the performance levels it will need to

handle several months later, as the number of on-line gamers daily grows, much faster than

any architecture or technician can actually react to. This forces the system to recognize the

20

2. Java Compression Offload Background

high workload and scale on-demand by distributing the work vertically and horizontally to

other server nodes in an intelligent manner. The system needs to dynamically support

additional nodes in order to circumvent oversaturation. When during a holiday the number of

players exponentially grow – a positive development, the server needs to have the added

dynamic capacity so that gamers won't be disappointed – a negative development!

Requirement 3 - High availability: As most games are intended for international clients that

live in different time zones, the server is not supposed to be shut down to restart for

maintenance, installation or for any other reasons. The server should not encounter crashes

and is supposed to run stable without scheduled downtime - zero downtime is expected.

Requirement 4 - Security. With the evolution of the Internet, onl-ine crime is becoming a

serious issue throughout the world. Gamers are with no exception confronted with the danger

of data theft and the game servers will continue to be an attractive target for hackers. A game

server should thus be technically heavy-armed and remain pervasive to avoid any loss of client

data.

Requirement 5 - High Speed. The server should remain agile as it faces massive computation-

intensive tasks. Taking Taikodom as an example, the server needs to implement for instance a

significant amount of real-world simulation and security processing. Real-world simulation

occurs when it needs to calculate the characteristics and reactions of the outer space objects

based on physical law: A ball thrown in a virtual world must obey the laws of gravity. An

explosion would only look “real” to the gamers when the objects fly the same way as they

would in reality. When a spaceship moves forward at nearly light speed, the objects it passes

over will look extended and the elapsed time shown on its devices will have to be calculated

slower. The server also requires to do data compression to reduce transfer volume. Both the

compression and the physical simulation involve much computation and consume a high

percentage of the system's computing power. This requires from the the server a certain super-

computing capability to qualify.

21

2. Java Compression Offload Background

2.3.3. Cell Blade and System z: A Perfect Hybrid Platform

The hybrid platform of IBM’s System z connected with the Cell Blades is a optimal synergy

that fulfills the above requirements. System z provides the highest level of security and

massive workload handling, assuring the execution of its administrative tasks and

guaranteeing an enduring connectivity to a huge number of clients. Cell/B.E. takes over the

most resource demanding calculations thus enabling the System z to fulfill its job.

This combination is an effective and financially attractive game server system, as the most

compute-intensive tasks are offloaded from the expensive CPU cycles of z and are carried out

on the much more economical Cell blades. Without offloading, the server system required

would will end up costing too much and would not be financially feasible.

System z and the Cell Blades of the testing environment were connected through gigabit

Ethernet. Higher data transfer speeds at the physical layer through Infiniband are still under

experimentation.

2.4. Hardware Compression Mechanism of System z

As data compression can be implemented in either software or hardware, there comes the

question if the compression work could actually be done by the hardware mechanism of

System z that already exist widely (for example under z/OS operating system), saving the

effort of implementation in software. System z has an auxiliary processor that provide

solutions for the compression requirements based on a LZ algorithm. By implementing

compression on hardware it could bring advantages like:

• running faster

• being less expensive

• black box principle

• offloading the main processor

22

2. Java Compression Offload Background

The followings is a short introduction to the hardware compression mechanism of System z. It

illustrates the answer to the question, why the z hardware compression facility could not have

been the solution for the compression job.

Two main components are required to activate hardware compression: the compression call

instruction (CMPSC) and the compression dictionaries. CMPSC is based on Lempel-Ziv 2

(LZ2 or LZ78) algorithm and specifies via general registers the source operand address and its

length, target operand address and its length, the location of the dictionary, and the indication

of the operation (compression or decompression). According to IBM Redbook [z03] CMPSC

can be used to compress any randomly or sequentially used data, as long as there is some

degree of repetition of character strings. CMPSC also has a symbol translation option that

allows the instruction to be used to compress network data. CMPSC uses two static

dictionaries for compression and decompression, that must be prepared and read into the

memory beforehand. This is usually done by a special program that read some sample data

and create the dictionary out of it. The performance of the compression will directly be

affected by the quality of the dictionary.

The hardware compression mechanism of CMPSC does not bring a solution to the current

System z platform that runs z/Linux as the operating system. There are generally two main

problems:

• Compatibility problem. Although CMPSC is used very much under z/OS, it can not be

implemented on a Linux environment. The compression format that CMPSC

instruction support, is not compatible to the standard compression algorithms of

Linux. Linux environment supports compression and decompression standards

like .gz, .bzip2, and .zip. Function gzip and zip implement LZ77 (LZ1) algorithm, a

patent-free compression algorithm. Bzip2 implements a patent-free algorithm as well

which combines several layers of compression for implementing on top of each other,

including Borrows-Wheeler Transform and Huffman coding. CMPSC however,

implement the patent-protected LZ78 (also named LZ1). This furthermore conflicts

with Linux's patent-free principle and was thus never an implementation on Linux.

23

2. Java Compression Offload Background

• Dictionary problem. Static dictionaries are applicable only when the content of the

data to be compressed is known beforehand, or when most of the key words that

would exist in the data are predictable. This is especially useful for example in

database compression, since all field names are known beforehand and entries could

be foreseen. It is very hard to construct an efficient static dictionary without knowing

the contents of the data. In cases like this, the dictionary has to be built dynamically.

They have to be created during compression to fit the input data. In the hybrid system

of this project, since the data from the client could appear in any format and the

content varies from case to case, there is no way to specify a general compression

dictionary that works for all situations that guarantees a good compression result all

the time.

24

2. Java Compression Offload Background

3. Architecture and Compression Library

3.1. System Architecture

In the Gameframe project, the server system is a combination of mainframe and the Cell

blades, both of which run Linux. The blades are plugged into System z and are connected with

it through a one gigabit Ethernet connection. Several Cell blade servers takes over physics

simulation. Another blade server is reserved for compression and decompression. The gamers

access the game server from their home client through the Internet. Upon receiving client data,

System z sends the packets to the Cell blade for unpacking and the Cell blade sends the

decompressed data back to System z. After finishing its work, System z lets the Cell blade

compress the data again before forwarding the results to the clients. The architecture of the

whole System is represented in the graph below:

 Graph 3: System Architecture of Gameframe with Cell blades for offload

The above is only a simplified structure. A demilitarized zone, the so-called DMZ, a

subnetwork that exposes the services to the Internet, prevails between the client and System z.

The DMZ is an additional layer of security for the organization's LAN (Local Area Network).

25

3. Architecture and Compression Library

Although not illustrated in the graph, the demilitarized zone separates the Intranet from the

Internet, is essential and cannot be omitted.

3.2. Zlib Library and the Deflate Algorithm

3.2.1. Background

Data compression is no new topic, and compression algorithms have seen little advance for

the last years. Compression algorithms can be generally divided into

• lossless data compression

• lossy data compression

Lossless data compression allows the exact reconstruction of the original data from the

compressed data and should be used when the source data and decompressed data have to be

identical. Text-based data is mostly compressed in this way. Examples of lossless compression

algorithms are Run-length encoding, Lempel-Ziv family (LZSS, LZW, etc.), Deflate

algorithm, PNG, TIFF, etc.

Lossy data compression converts the data within defined tolerences. It is most commonly used

to compress multimedia data (audio, video and graphic).

3.2.2. Deflate Algorithm

Zlib compression library was written by Jean-loup Gailly (compression) and Mark Adler

(decompression) and is designed to be a free, general-purpose lossless compression library

without being covered by payment liable patents. Zlib implements Deflate algorithm and

achieves typical compression ratios between 2:1 and 5:1. Theoretically zlib can in extreme

cases reach a compression factor of 1000:1 [zlib03]. Zlib is widely used under different

platforms and for different languages, such as zip and gzip tools under Linux, Winzip under

windows, java.util.zip package in the Java language, etc.

26

3. Architecture and Compression Library

The Deflate algorithm is a lossless compression algorithm that uses a combination of LZ77

and Huffman Coding. Deflate algorithm is widely used in different libraries because of its

good performance and its guarantee of never expanding the data, in comparison with LZW,

which in extreme cases doubles or triples the file size.

LZ77 works based on a sliding window principle which slides through the whole text. The

window consists of two buffers: one search buffer, and one preview buffer. The search buffer

contains the text fragment that the program has worked on and serves like a dictionary. The

preview buffer contains the text that needs to be compressed. To construct the compression

data, LZ77 looks through the search buffer - when the next sequence of characters to be

compressed in the preview buffer is identical to that can be found within the search buffer, the

sequence of characters will be represented by two numbers: an offset, suggesting how far back

into the search buffer the sequence starts, and a length, suggesting the number of repeated

characters. During compression, a hash table is constructed to enable a faster searching

process. The size of the buffers has to be set beforehand. A bigger buffer size makes

compression of a higher ratio possible, but would take longer time. A smaller buffer size

enables the compression algorithm work faster, but won't reach a ratio as high. The libraries

that implement LZ77 usually gives the user the possibility to set the level of compression

according to their wish. The following gives an example of compressing the byte sequence of

“abcamanand” with LZ77.

Distance Length Symbol

abcamanand 0 0 'a'

a bcamanand 0 0 'b'

ab camanand 0 0 'c'

abc amanand 3 1 'm'

abcam anand 2 1 'n'

abcaman and 2 2 'd'

Table 1. LZ77 compression

27

3. Architecture and Compression Library

Huffman coding is based on the frequency of occurrence of the characters. The characters that

occur more frequently will be encoded with a lower number of bits - the less frequently with

higher - through a tree structure where each leaf indicates a character. The algorithm

constructs at the end a so-called Code Book that serves as a reference for decoding. Huffman

coding compresses typically between 20% and 90% of the original data.

3.2.3. Gzip File Format Specification RFC 1952

Table 2: Gzip file format

Source: Gzip File Format Specification version 4.3, [rfc1952]

28

 +---+---+---+---+---+---+---+---+---+---+

 |ID1|ID2|CM |FLG| MTIME |XFL|OS | (more-->)
 +---+---+---+---+---+---+---+---+---+---+

 (if FLG.FEXTRA set)

 +---+---+=================================+
 | XLEN |...XLEN bytes of "extra field"...| (more-->)
 +---+---+=================================+

 (if FLG.FNAME set)

 +===+
 |...original file name, zero-terminated...| (more-->)
 +===+

 (if FLG.FCOMMENT set)

 +===================================+
 |...file comment, zero-terminated...| (more-->)
 +===================================+

 (if FLG.FHCRC set)

 +---+---+
 | CRC16 |
 +---+---+

 +=======================+
 |...compressed blocks...| (more-->)
 +=======================+

 0 1 2 3 4 5 6 7
 +---+---+---+---+---+---+---+---+
 | CRC32 | ISIZE |

 +---+---+---+---+---+---+---+---+

3. Architecture and Compression Library

The Deflate algorithm uses the advantage of both LZ77 and Hufmann algorithms and turns out

to be one of the most popular lossless compression algorithms in wide use. Gzip utility

implements the Deflate algorithm and the zlib library to compress and decompress data based

on files. According to RFC 1952 the gzip file format is specified in the above Table 2. Here

are some important notifications to the specification:

• ID1 and ID2 stand for identification 1 and 2, specifying the file as being in gzip

format.

• CM stands for compression method. It is set to 8 when the Deflate compression

algorithm is used.

• FLG are the flags

. bit 0 FTEXT : Setting FTEXT usually denotes an ASCII text file. This flag is

usually cleared if binary data is involved.

. bit 1 FHCRC: If this is set, it denotes the use of the CRC16 version.

. bit 2 FEXTRA : Ff this is set, it signifies the existence of optional extra fields.

. bit 3 FNAME : Specify whether an original file name is available.

. bit 4 FCOMMENT : When set, denotes the existence of a zero-terminated

comment.

• MTIME stands for modification time.

• XFL stands for extra flags.

• OS stands for the operating system.

• CRC32 denotes the Cyclic Redundancy Check value of the uncompressed data.

• ISIZE stands for input size and contains the size of the original (uncompressed) input

data.

3.3. The Zlib Library Optimized for the Cell Processor

3.3.1. Introduction

Zlib library is written for a sequential environment. By optimizing it for the Cell blade one

29

3. Architecture and Compression Library

needs to have a thorough understanding of the library’s functionality in order to exploit Cell's

unique architecture. The library has been optimized by Seunghwa Kang, a Ph.D. student from

Georgia Tech [zlib04]. An example application named minigzip demonstrates the performance

and the use of the Zib library optimized for the Cell processor. Sourceforge [zlib05] presents

the source code for both the library and the gzip utility. Two compiled binary executables for

minigzip application are offered to run on a Cell blade environment with or without the SDK.

The library offers a command-line user interface. User need to specify the name of the file to

be compressed and the variables if needed. After the compression a new file with extension

“.gz” is generated in the folder. The program offers the user the possibility of specifying the

compression level (from 1 to 9), the block size (from 100 to 900 KB) and the maximum

number of SPE threads that will be generated for compressing each file stream. For

decompression user uses the same command with flag '-d' added ahead of the file name.

3.3.2. Optimization Analysis

Parallelizing the zlib library on the Cell processor is not easy. Zlib has a high dependency on

data processing and the way the algorithm accesses the data makes it difficult to parallelelize.

Basically the following points prohibit a good parallelization of the code [zlib06]:

• Data that is compressed by LZ77 is a mixture of literals and numbers that indicate

length and distance (see table 1). In order to find out what the next symbol is, the

symbol that is before it has to be identified first. This sets a limitation for the Cell to

parallelize it.

• Decompression of data processed through the Huffman algorithm also builds on data

dependency which needs to be processed sequentially. This is due to the character

symbols that are encoded with different bit lengths. The length cannot be known when

the characters before is not yet decompressed.

• Both the LZ77 and Huffman algorithms require a great amount of table lookups. This

happens for instance when the LZ77 algorithm looks for the identical literals in the

search buffer or when the Huffman-coded data runs the decoding process. This process

cannot be vectorized since the Cell SPE does not support this type of random memory

30

3. Architecture and Compression Library

accessing.

• Another point is the difficulty of branch prediction. Branches always strongly depend

on the input. Well compressed data contains a great percentage of numbers (see table

1) indicating the length and distance of the indexed content in the sliding window. Poor

compressed data, on the contrary, contains lots of literals and less numbers. This results

in different branch behaviors and reduces the performance for the zlib library when

running on the Cell.

According to Kang, the following optimization of zlib code for compression and

decompression has been achieved for zlib running on the Cell bladeAccording to Kang, the

following optimization of zlib code for compression and decompression has been achieved for

zlib running on the Cell blade [zlib06]:

• Calculation of the hash key using the three bytes starting from the inserting byte at

compression

• String comparison of LZ77 using SPE's 16 byte byte-wise vector comparison

instruction at compression

• Vectorization of the window update loop of LZ77 at compression

• Vectorization of table construction at decompression

• Vectorization of CRC calculation algorithm and Adler32 algorithm (an alternative to

CRC) of decompression

• Identification of computation-intensive loops and applying loop unrolling

• Static branch hinting

• Separation of compression and decompression routines to reduce memory usage

The gzip utility, by implementing zlib library, is data-dependent as well. According to Kang

this tool has gone through the following optimization [zlib06]:

• Full flushing to break data dependency based on introducing an extra field in the

header data of the compressed file

• Input file partitioning to multiple blocks

31

3. Architecture and Compression Library

• File read and write threads

These efforts enables the gzip implementation on Cell BE in achieving an overall speedup of

2.89 for compression, as compared with a Intel Pentium4 system. Other comparisons are

illustrated in the following graph:

Graph 4. Performance comparison of Cell/B.E. optimized gzip compression with the

original zlib implementation on other single processor architectures

Source: Paper HPC-Cell-ParCo2007.pdf [zlib06]

To make it easy to distinguish between the zlib optimization done from Kang and the thesis

author's further optimization for the hybrid system in the following chapters, Kang's version of

the zlib library including the optimized gzip utility will be called “Georgia-zlib”. Georgia-zlib

is further adapted and optimized to fit the requirements and specialty of the hybrid system,

making a compression offload from System z onto the Cell blade profitable.

32

3. Architecture and Compression Library

4. Program Analysis

4.1. System environment

The Georgia-zlib library and its gzip code were originally compiled with gcc provided by Cell

SDK 2.0 and run on a IBM QS20 Cell blade with SPE library libspe. The tool run under

SDK3.0 on a QS21 as well.

The System z runs a Java client that calls up the Cell blade server compression and

decompression functions. The server functions are written in C. In the example of Hoplon's

Taikodom, the client game code is written in Java. The client can also be implemented in any

programming languages as long as the library supports socket.

4.2. Modification of Georgia-zlib for Offload

For the purpose of offloading System z's workload onto a Cell blade, the optimized gzip utility

in the Georgia-zlib package is a helpful basis. Certain points of the utility need to be optimized

so that the offloading can achieve optimal performance.

4.2.1. Interface and File I/O

The gzip tool of Georgia-zlib offers a command line interface and requires a file name as a

variable. The tool accesses the data through the standard file i/o functions in C, which, after

being called, copies the data from the disk to a library buffer. The buffer size is usually set at

8192 bytes in the Linux operating system, that means, the file data is transferred from the disk

to the memory in blocks of 8 KB. Accessing the disk creates a high i/o latency. Avoiding this

would help to increase the performance of the Cell/B.E. server, therefore the following

optimization to the current gzip utility was carried out:

• The new interface of the calling program receives a memory address and a number as its

33

4. Program Analysis

arguments instead of a file name. The memory address indicates the location of the data

which needs to be compressed/decompressed; The number specifies the size of the data.

This optimization avoids the original disk activity that is actually unnecessary. As

System z would send the data to the Cell blade through a standard TCP socket, the Cell

blade now receives the client data first in its main memory buffers. There is thus no

need to write the data onto disk only to read it back sometime later. Through a much

faster data access in the memory, the performance increases. This optimization involves

changing the program code in the gzip utility, including that running in the SPE.

• Integrating the gzip function call in the TCP socket program enables calling the program

directly without using command line. This is a trivial modification which requires a

simple adaption of the main function name and arguments of Georgia-zlib.

4.2.2. SPE Thread Adaption

The SPE thread creation model of Georgia-zlib needs to be adapted for this particular hybrid

system constellation as well. Georgia-zlib is optimized for data being equally distributed to

each SPEs – the parallel-pipelined model discussed in chapter two. At compression it

generates SPE threads on all of the available SPEs (or according to user definition) and sends

each one a same amount of data to be processed. To realize this, the PPE carries out many

organizational tasks including loading the basic workload, assigning vectors of data,

initializing buffer variables and creating SPE threads. These tasks themselves take a lot of

system resources and create a big overhead for the PPE for utilizing each SPE. After a closer

look at the situation, it is obvious that the extra workload is actually only useful when the data

to be processed is very large. By analyzing the realistic data sizes being transferred inside the

hybrid system (in the Hoplon around 50 KB per stream and less than 100 KB), compressing

the data that way actually takes longer and creates more costs for the system. Client data in

this structure more often falls under the 100 KB size limit. For this reason, the data doesn't

need to be distributed to run on different SPEs – one stream needs only one SPE so that the

other ones can be reserved for the other streams. At every incoming data stream, the PPE

creates a new child process to collect the data and then sends it to one free SPE to compute.

34

4. Program Analysis

Graph 5. SPE thread creation

4.2.3. Workflow and Other Modifications

The optimized gzip utility begins its execution with argument parsing. Several issues require

explanation:

• The compression level from the Cell's server program is set to 6 to achieve an average

compression and time performance. This number can be set to anything between 1 and

9. The greater the number is, the higher the compression ratio will be and the more

time it will cost. This number should not be set by the parsing function of gzip, but

should be done by the Cell's server program through specifying one more compression

argument variable.

• The number of SPU threads that should be generated per input stream is set to 1

(represented by '-t1'), indicating the concept of one stream being compressed with one

SPU.

• The size of the compression block is set to the maximum block size represented by '-

b9'. The maximum block size is set by the header file minigzip.h with a value of 900

KB. This size can also be set to 9 MB, allowing the highest input data stream size of

this value. The current Cell blade QS21 does not support 90 MB due to its memory

size.

• If the arguments contain a '-d', the decompression process will be invoked.

• The other arguments ('-f', '-h', '-r') are deactivated in order to achieve simplicity. They

lack impact in compressing normal data. Modification could be undertaken in the Cell

server’s program to reactivate the usage of these flags.

35

PPE

SPE SPE SPE SPE SPE SPE SPE SPE

4. Program Analysis

Depending on the existence of the input argument “-d”, the program sends the data for either

compression or decompression. When compressing, it firstly starts the header writing

procedure which fills up the first 22 bits with the header information that was originally

created for a zipped file. The structure of the header data can be found in the gzip format

specification (see table two). After defining the memory address pointer and the data size, the

program then goes on to determine the workload that will later be processed by the SPE. A

control block for the SPE is created, specifying the location and size of input, output and other

information. The program then starts an SPE thread for each compression stream. It also

creates a PPE thread which accumulate the result sent from the SPE. The PPE and SPEs

communicate the processing status using mailboxes. After all blocks are processed, the PPE

thread has already saved the result data in the right order. The program then starts a new

procedure of header writing (as some information was missing when the first procedure took

place) and substitutes the old header with the new one. The program finishes with a write

trailer process that writes the CRC information at the end of the data buffer before passing its

location to the Cell server program.

Decompression is similarly processed with header and trailer checking instead of writing

them. After achieving the compression information from the header, the program lets the data

be decompressed accordingly and finishes delivering a result stream that contains only pure

data.

In both folders spu_compress and spu_decompress store the SPU codes, the parts of file

access are modified to support reading the changed data structure that is sent from the PPE.

4.3. Networking through Sockets

4.3.1. Background Information of Socket Programming

Besides RPC, socket programming is one of the most often used mechanisms to build up

36

4. Program Analysis

networking between different systems as long as both kernel sides offer socket support. It is in

fact the faster way of communication, as it avoids much system overhead of middleware

implementation that would have been necessary for RPC.

Socket implementation happens on the TCP/IP stack of an operating system. It can usually

achieve the upper bounds of bandwidth and speed that can be achieved between the two

communicating systems. The simplest TCP/IP network test can be performed using the ping

command. By giving the command “ping -c 10 cellhop”, the server named “cellhop” receives

10 TCP packages (based on standard mode) with one second interval between each package

and generates the following output:

Table 3. TCP/IP network test

Here “rtt” refers to the Round-trip Time – the time elapsed for the transmission of 64 bytes of

a TCP packet between the two operating systems. Server cellhop offers an average transfer

time of half a millisecond, which is also the system latency of TCP.

Socket programming is not language dependent, and it is not obligatory to have the client and

the server implement the same programming language. The great flexibility of socket

programming is one main reasons why socket use is so widespread.

4.3.2. Cell/B.E. Server Program

The Cell server program creates a usual AF_INET server socket that enables a connection to

it. INET stands for Internet, allowing a TCP/IP connection to the server with an IPv4 Internet

address and a port number reserved for that service. The socket has the type of

SOCK_STREAM that guarantees error-free arrival of the data stream in the right order.

37

­­­ cellhop.boeblingen.de.ibm.com ping statistics ­­­

10 packets transmitted, 10 received, 0% packet loss, time 8992ms

rtt min/avg/max/mdev = 0.419/0.482/0.598/0.056 ms

4. Program Analysis

The program continues with binding the socket with the address (sin_family and sin_port) and

sets the incoming address (client address) to be INADDR_ANY, allowing connections from

any client inside the network. This variable should be changed if the Cell server is located in

an insecure network without firewall protection or other safety mechanisms. In the case of the

hybrid system, Cell blades situated in the Intranet is protected by layers of firewalls. It can

thereby trust any client that requests a connection to that port. After building up the real

Gameframe infrastructure, this address is recommended to be configured into the IP-address

of the System z in order to avoid unwanted connections and dedicate this Cell blade server

only for compression offload.

The program is able to handle many connections at the same time. It creates a new child

process when needed using fork() allowing the server to remain available for other

requirements as well as processing incoming data. The program sets a BACKLOG number of

10, which is the highest allowed pending connections value. This number could also be set to

other integer values including 0. A higher value allows more simultaneous connections but

could delay compression processing since too many open connections take much of the

available system resources away.

At the end of the execution process, the program reaps the dead process to free system

resources. When a child process terminates, the parent process is informed through a

SIGCHLD signal by calling the waitpid() system call. All the resources of the dead process are

given back to the operating system and the process ID is deleted from the process table.

The data format that the Cell server program receives from System z is specified as follows:

size of data + argument + data for processing. The size is an integer of four bytes that could

represent over 4 billion bytes of incoming data (more than 4 GB).

The only argument that the System z can send the Cell server is '-d' indicating decompression.

Other arguments can no longer be specified by the z client. This avoids a too complicated

interface for the user (the one that calls up Cell compression), and helps to reduce mistakes. A

38

4. Program Analysis

user that has imported the class CellDeflater and CellInflater package in his client program

can call up deflate(inputbytes) and inflate(inputbytes) functions by only specifying his input

data with no knowledge of how the server system works.

The result data that the server sends back after finishing its compression or decompression has

the format: size + result data. The size is also represented by an integer of four bytes as in the

case of receiving. The result data is sent over to the client through the socket channel.

How the data is represented in the communicating systems deserve attention as well. In the

hybrid system architecture, both System z and Cell blade implement big-endian structure, thus

eliminating potential problems. Should the data presentation differ, a conversion between the

TCP network byte oder and the host byte order might have to take place. Network byte order

transmits data in big-endian format.

The server program is ready to run. It calls the modified gzip utility, passing the data and

variables to it. Gzip processes the input and returns the result to the server in form of a struct

value of a memory pointer and data size.

Table 4. Struct return value

The Cell server sends the data to its client program on System z. The Cell's main program

doesn't quit. The child process that handles each connection is reaped at exit.

39

typedef struct _result_t{
unsigned int size;
char* buf;

} result_t;

4. Program Analysis

Table 5. Reaping dead process

4.4. CellDeflater and CellInflater for Java Client

Clients of all programming languages can talk with the Cell server. In fact, the offload does

not have to be restricted to System z – other platforms can also profit from Cell's

functionalities. As the game software is written in Java, a Java interface of compression

offload on the Cell blade server is provided in the source code.

Java programmers that wish to take the advantage of the offload mechanism of the Cell blade

server should import the Java class CellDeflater and CellInflater of his thesis. CellDeflater is

equipped with the function deflate(inputbytes) that calls up the compression of the Cell blade.

CellInflater likewise inflate(inputbytes) that brings the decompression function to running. In

the example program, the Java client sends the byte data for compression and receives the

compressed data from the server.

40

void sigchld_handler(int s)
{

while(waitpid(­1, NULL, WNOHANG) > 0);
}

int main(){
struct sigaction sa;
sa.sa_handler = sigchld_handler;
sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_RESTART;
if (sigaction(SIGCHLD, &sa, NULL) == ­1) {

perror("sigaction error");
exit(1);

}

if (!fork()) {
...
}

}

4. Program Analysis

Table 6. Java client

The deflate function initializes a socket connection to the Cell blade server, sends over the

working bytes and receives the result bytes before returning them to the user program.

Table 7. Deflate class sending data

Bytes received are processed in a similar way. The received size should be checked to see if it

equals the number specified beforehand. When not, the function recv(1) needs to be called to

run in a loop.

41

BufferedOutputStream writer = new
BufferedOutputStream(Socket.getOutputStream());

DataOutputStream out = new DataOutputStream(writer);
out.writeInt(inputSize);
out.writeInt(mode);
out.write(input,0,inputSize);

byte[] compressedByte;
byte[] decompressedByte;
CellDeflater def = new CellDeflater();
compressedByte = def.deflate(inputByte);
CellInflater inf = new CellInflater();
decompressedByte = inf.inflate(compressedByte);

4. Program Analysis

5. Efficiency Evaluation

5.1. Compression with Java.util.zip

The most obvious compression tool for a java programmer is the java.util.zip package. By

importing this package the programmer can use the convenient compression classes and their

comfortable functions. An example: the Deflater class offers a deflate(1)3 function, the

GZIPInputStream that offers a read(3). The performance of these classes is based on the

performance of the Java language. They do not overcome the performance of machine-near

languages like C. The test was carried out on a z/Linux system that runs on a z/VM operating

system. It has 20 GB of main memory and utilizes 12 dedicated CPUs. The command “java

-version” gives the following information:

Table 8. Java version information

The compression and decompression of java.util.zip was based on the following piece of code:

3 The number in the bracket indicates the number of parameters a function has.

42

java version "1.5.0"
java(TM) 2 Runtime Environment, Standard Edition (build
pxz64devifx­20071025 (SR6b))
IBM J9 VM (build 2.3, J2RE 1.5.0 IBM J9 2.3 Linux s390x­64
j9vmxz6423­20071007 (JIT enabled)

5. Efficiency Evaluation

Table 9. java.util.zip compression and decompression

The variable “input” is a string that contains the content of a file that was read from the disk

into the main memory beforehand. The time used for disk access for java.util.zip is not

calculated into the following graph since a programmer can also have his compression data in

main memory instead of on the disk. If this is not the case, extra time has to be calculated in

the consumption of java.util.zip. As disk accessing time is composed of Seek Time4, Rational

Delay5 and Transfer Time6, a good 20 milliseconds could be needed for accessing 50 KB of

data on the disk.

For every compression, 10 identical trials were conducted in order to canculate an average

value. The data being compressed is normal English text7. The numbers form a rough

representation of the working time of java.util.zip. For compressing and decompressing 60 KB

of data, this original Java package takes about 50 milliseconds (without disk access time) as

shown:

4 Seek Time is the amount of time needed for the access arm to reach the disk track. It depends on the spindle
speed of the disk and the numbers between 10 to 20 milliseconds are common[java01].

5 Rotational Delay is the time needed for bringing the disk to a needed rotation speed. 7200 revolutions per minute
(RPM) has a maximum rotational delay of 8 ms or an average rotational delay of 4ms.

6 Time during which data is actually read and written to the disk.
7 The text is chapters extracted from the Cell BE Programming tutorial.

43

Deflater java_def = new Deflater();
java_def.setInput(input.getBytes());
java_def.finish();
java_def.deflate(java_comp);

Inflater java_inf = new Inflater();
java_inf.setInput(java_comp);
java_inf.inflate(java_decomp);
java_inf.end();

5. Efficiency Evaluation

Graph 6. Compression measurements with java.util.zip

The values, as may be seen, are not always consistent. For an sample data size of 100 KB, the

compression time was: 63ms, 52ms, 64ms, 50ms, 155ms, 49ms, 154ms, 50ms, 52ms, 49ms,

55ms, 51ms, 51ms, 48ms. The “usual” measurements were around 50ms, the two values

above 150 milliseconds exceptionally high. This is caused by the virtual machine that the

z/Linux operating system is built on. By coordinating a number of operating systems running

together on one single physical machine, the z/VM has to distribute the resource fairly that the

compression cycles sometimes have to wait to be rescheduled. If the same code were executed

on Linux directly installed on a physical machine, the measurements would tend to stay

constant.

5.2. Compression with Cell/B.E. Server

5.2.1. Compression Time Components

The time required for Cell/B.E. supported compression is split into several components. On

top of the real SPU time that the SPEs need for doing the actual compression and

decompression, the PPU uses a certain amount of time to carry out the gzip organizational

tasks that are needed before the actual compression work can take place in the SPU. This is

44

5. Efficiency Evaluation

named gzip time; it includes processing the gzip header and trailer, assigning initial workload,

creating the SPE thread and the PPE write thread etc. Beyond this gzip time, the Cell blade

server is involved in other organizational tasks like creating new processes for the client

connections, gathering client data packages, calling up compression / decompression and

sending results back to the client. This is called the Cell server total time and encompasses the

entire time consumption of the Cell blade server. The Java client at the other end of the

network initializes the offloading by creating a new socket, new InputStream and

OutputStream objects to call up the compression. This is demonstrated with the light blue

colored circle. All four circles contribute to the total cost of time.

Graph 7. Time composition of Cell-supported Compression

5.2.2. Cell Server Total Time

The server programs run on the Linux operating system of the Cell blade QS21 with two Cell

processors and 2 GB of main memory. The graph below shows the time consumption of the

three smaller circles of Graph 7, with each represented in blue, pink and yellow. The values

are an average of 10 measurements respectively.

45

5. Efficiency Evaluation

Graph 8. Cell Server Total Time

For compressing and decompressing 60 KB of data, the Cell blade only uses 15ms locally,

which is a good acceleration compared to Java's 50ms. This shows a drastic contrast between

the performance of the C language and Java. Compressing the same data using the same

algorithms, the 35 milliseconds difference is pure overhead caused by the Java language and

its virtual machine.

5.2.3. Java Client Time

The Java client that calls up the Cell blade's compression was tested on the same System z

machine of the java.util.zip test. The systems are connected to each other through gigabit

Ethernet, which allows a highest data transfer rate of 125MB/s. As shown in the following

graph, the Java client adds on top a considerable amount of time indicated by the light blue

colored path. The Java language again takes a lot of system resources and proves to be

disadvantageous and costly. By compressing 60 KB of data, it consumes an extra 20

milliseconds only for creating the necessary data objects for receiving and sending. In

comparison, the SPE only needs 8 milliseconds net time to do the actual compression work.

46

5. Efficiency Evaluation

Graph 9. Java Client Time

An average calculation time with the Java client was from 10 trials. A typical phenomenon

was that the time for the first compression invocation was always much higher than the rest.

For 100 KB data again, the results were 299ms, 49ms, 45ms, 45ms, 56ms, 47ms, 56ms, 49ms,

54ms, 47ms and 54ms. This is mainly caused by Java's relative higher cost at initializing and

implementing some expensive objects during the first call, in this case objects of Socket,

DataInputStream and DataOutputStream. On the Cell blade's side, the gzip time, shown in

pink, showed little divergence between trials – a few milliseconds at the most [mea01]. It is

thus strongly recommended that a Java client programmer consolidate the number of

compression invocations in one piece of program code in order to avoid unnecessary costly

object initiation.

5.3. Comparison and Conclusion

Combining java.util.zip and the Cell blade results in the following. Java.util.zip, represented in

purple, demonstrates a higher demand on time. The Java client in light blue proves it’s

advantage over the java.util.zip starting at a data size of about 10 KB. Compression offloading

47

5. Efficiency Evaluation

from this size on is worthwhile and the extra costs of the Java client are well compensated for.

Graph 10. Java and Java Client Comparison

As long as time is concerned, compression tasks of less than 10 KB data should not conduct

through the offload mechanism, as it will take longer for the little amount of data to be

compressed on a network based server rather than using Java's local compression.

48

5. Efficiency Evaluation

6. Outlook

The design of the workload offloading on System z leveraged network-connected Cell/B.E.

servers proves to be a successful and well-profitable option as illustrated in chapter five. By

implementing offloading, the CPU cycles of System z are greatly reduced and compression

time is saved. The actual percentage of CPU cycles saved was not measured in the framework

of this thesis. This would certainly be interesting to quantify and be worthy of further

experimentation .

The data transfer of the test environment is based on a one gigabit Ethernet connection. The

Infiniband communication system allows an even higher transfer rate and would raise the

performance of the offload design even more. The improvement from Infiniband is currently

being measured by another thesis student.

As discovered during testing, the client program implemented in Java isn't very efficient and

has hindered achieving better performance. This raises the inherent question of the

performance of other programming languages in the same context. This would indeed be an

interesting comparison in future experiments.

49

6. Outlook

A. Appendix

A.1Source Index

• [z01] Robert Frances Group: Powerful Incentives - Using IBM System z to Realize

Significant Operational Cost Savings , ZpowerJan2007.pdf

• [cell01] MPR Microprocessor Reward:

http://www.mdronline.com/watch/watch_Issue.asp?Volname=Issue+

%23013006&on=1 (last visited on 7th May, 2008)

• [cell02] Forbes, 2006: http://www.forbes.com/forbes/2006/0130/076.html (last visited

on 7th May, 2008)

• [cell03] IEEE Spectrum Jan 2006: Winners & Losers 2006, IEEE Spectrum Jan

2006.pdf

• [cell04] Nicholas Blachford. 2005. Cell Architecture Explained:

http://www.blachford.info/computer/Cell/Cell0_v2.html (last visited on 8th May,

2008)

• [cell05] IBM Developerworks Multicore:

http://www.ibm.com/developerworks/power/cell/ (last visited on 15th, May, 2005)

• [cell06] A. Buttari, P. Luszczek, J. Kurzak , J. Dongarra, G. Bosilca . May 2007. A

Rough Guide to Scientific Computing On the PlayStation 3.

http://www .n etlib.org/utk/people/JackDongarra/PAPERS/scop3.pdf

• [cell07] IBM, CBE_Programming_Tutorial_v3.0.pdf

• [z02] IBM Journal of Research and Development, Schwarz, E M, Check, M A, Shum,

C-L K, Koehler, T, Et al, Jul/Sep 2002. Microarchitecture of the IBM eServer z900

processor. http://findarticles.com/p/articles/mi_qa3751/is_200207/ai_n9093756/pg_1

(last visited on 14 May, 2008)

• [z03] IBM Redbook, Paolo Bruni, Rama Naidoo, DB2 for OS/390 and Data

Compression , Nov. 1998. SG245261.pdf

50

http://www.forbes.com/forbes/2006/0130/076.html
http://findarticles.com/p/articles/mi_qa3751/is_200207/ai_n9093756/pg_1
http://www.netlib.org/utk/people/JackDongarra/PAPERS/scop3.pdf
http://www.netlib.org/utk/people/JackDongarra/PAPERS/scop3.pdf
http://www.ibm.com/developerworks/power/cell/
http://www.blachford.info/computer/Cell/Cell0_v2.html
http://www.blachford.info/computer/Cell/Cell0_v2.html
http://www.blachford.info/computer/Cell/Cell0_v2.html

A. Appendix

• [zlib01] Zlib library, http://www.zlib.net/ (last visited on 31th May, 2008)

• [zlib02] Antaeus Feldspar, An Explanation of the Deflate Algorithm,

http://www.zlib.net/feldspar.html (last visited on 15th May, 2008)

• [zlib03] Zlib Technical Details, http://www.zlib.net/zlib_tech.html (last visited on 15.

May 2008)

• [zlib04] Site of Prof. David A. Bader on Georgia Tech,

http://www.cc.gatech.edu/~bader (last visited on 16. May, 2008)

• [zlib05] SourceForge.net, http://sourceforge.net/projects/cellbuzz (last visited on 15.

May, 2008)

• [zlib06] D.A. Bader, V. Agarwal, K. Madduri, S. Kang, Sept. 2007. High performance

combinatorial algorithm design on the Cell Broadband Engine processor . Paper HPC-

Cell-ParCo2007.pdf

• [oth01] Henry Newman, Using Lib C and I/O and Performance,

http://www.samag.com/documents/s=9365/sam0204h/0204h.htm (last visited on 19th

May, 2008)

• [rfc1952] Gzip File Format Specification version 4.3, May 1996,

http://www.faqs.org/rfcs/rfc1952.html (last visited on 19th May, 2008)

• [java01] Disk access time, http://en.wikipedia.org/wiki/Access_time (last visited on

16. July, 2008)

• [mea01] Huiyan Roy, 17th July, 2008. Performance Measurement General

Information.odt

• [cell08] Roadrunner, http://www.top500.org/system/9485 (last visited on 16. July,

2008)

• [cell09] Cell Processor, http://en.wikipedia.org/wiki/Cell_%28microprocessor%29

(last visited on 16. July, 2008)

• [g01] J. A. Kahle, Cell Broadband Engine Architecture: kahle.pdf

• [g02] http://en.wikipedia.org/wiki/Taikodom

• [g03] Jochen Roth, IBM, Nov. 2007. Gameframe_4AcademicDays_20071106.ppt

• [g04] D.A. Bader, V. Agarwal, K. Madduri, S. Kang, Sept. 2007. High performance

51

http://en.wikipedia.org/wiki/Taikodom
http://en.wikipedia.org/wiki/Cell_(microprocessor)
http://www.top500.org/system/9485
http://www.top500.org/system/9485
http://www.top500.org/system/9485
http://en.wikipedia.org/wiki/Access_time
http://www.faqs.org/rfcs/rfc1951.html
http://www.samag.com/documents/s=9365/sam0204h/0204h.htm
http://sourceforge.net/projects/cellbuzz
http://www.cc.gatech.edu/~bader
http://www.zlib.net/zlib_tech.html
http://www.zlib.net/feldspar.html
http://www.zlib.net/

A. Appendix

combinatorial algorithm design on the Cell Broadband Engine processor . Paper HPC-

Cell-ParCo2007.pdf

• [pf02] Huiyan Roy, 15th July, 2008. Java Compression Time.odt

• [pf03] Huiyan Roy, 15th July, 2008. Cell Supported Compression Measurement.odt

• [cell10] IBM Redbook, David Watts , Randall Davis , Ilia Kroutov, IBM BladeCenter

Products and Technology, Feb. 2008. sg247523.pdf

• [cell11] IBM Redbook, Programming the Cell Broadband Engine Examples and Best

Practices, Feb. 2008. sg247575.pdf

52

A. Appendix

A.2 Table Index

Table 1. LZ77 compression...27

Table 2: Gzip file format ...29

Table 3. TCP/IP network test...38

Table 4. Struct return value..40

Table 5. Reaping dead process...41

Table 6. Java client..42

Table 7. Deflate class sending data..42

Table 8. Java version information..43

Table 9. Java.util.zip compression and decompression...44

53

A. Appendix

A.3 Graph Index

Graph 1: Cell Broadband Engine Architecture ...15

Graph 2: Massive Social Game Taikodom from Brazilian company Hoplon19

Graph 3: System Architecture of Gameframe with Cell blades for offload..............................25

Graph 4. Performance comparison of Cell/B.E. optimized gzip compression..........................33

Graph 5. SPE thread creation...36

Graph 6. Compression measurements with java.util.zip ..45

Graph 7. Time composition of Cell-supported Compression ...46

Graph 8. Cell Server Total Time..47

Graph 9. Java Client Time...48

Graph 10. Java and Java Client Comparison...49

54

A. Appendix

A.4Abbreviations and Definitions

Cell/B.E. Cell Broadband Engine

CP Central Processor, the general purpose processor
of the System z

DMZ Demilitarized Zone, a subnetwork staying
between the untrusted network (usually Internet)
and LAN.

EIB Element Interconnect Bus

JVM Java Virtual Maschine

GNU GPL GNU General Public License, a widely used free
software license

IDL Interface Definition Language, a language that
specifies the interface of a service component. It is
widely used in RPC, CORBA, etc.

IFL Integrated Facility for Linux, this is a System z
processor dedicated for running Linux operating
system.

LAN Local Area Network

LZ1 Lempel-Ziv 1, also called LZ77

LZ2 Lempel-Ziv 2, also called LZ78

MIC Memory Interface Controller

PPE Power Processing Element

PPU Power Processing Unit

RMI Remote Method Invocation

RPC Remote Procedure Call

RPM Rotations per Minute

RTT Round Trip Time, the elapsed time for the
transmission of 64 byte data between a client and

55

A. Appendix

a server machine.

SPE Synergistic Processing Element

SPU Synergistic Processing Unit

STI Sony, Toshiba, IBM

z/Linux Also called Linux on System z, is the Linux
operating system on the IBM System z.

z/OS An operating system on the IBM mainframe.

z/VM System z Virtual Machine operating system

56

	Acknowledgment
	Executive Summary
	Table of Contents
	1. Introduction
	1.1. IBM System z in a Hybrid Platform
	1.2. Purpose of Thesis
	1.3. Structure of Thesis

	2. Java Compression Offload Background
	2.1. Cell Processor
	2.1.1. Cell Processor Isn't Just for Games
	2.1.2. Cell and the “Three Challenges”
	2.1.3. Cell/B.E. Architecture
	2.1.4. Cell Programming
	2.1.5. Linux on Cell
	2.1.6. The Cell Blade

	2.2. Linux on System z
	2.3. Games on System z
	2.3.1. Project Gameframe
	2.3.2. MMOG Games Requirements
	2.3.3. Cell Blade and System z: A Perfect Hybrid Platform

	2.4. Hardware Compression Mechanism of System z

	3. Architecture and Compression Library
	3.1. System Architecture
	3.2. Zlib Library and the Deflate Algorithm
	3.2.1. Background
	3.2.2. Deflate Algorithm
	3.2.3. Gzip File Format Specification RFC 1952

	3.3. The Zlib Library Optimized for the Cell Processor
	3.3.1. Introduction
	3.3.2. Optimization Analysis

	4. Program Analysis
	4.1. System environment
	4.2. Modification of Georgia-zlib for Offload
	4.2.1. Interface and File I/O
	4.2.2. SPE Thread Adaption
	4.2.3. Workflow and Other Modifications

	4.3. Networking through Sockets
	4.3.1. Background Information of Socket Programming
	4.3.2. Cell/B.E. Server Program

	4.4. CellDeflater and CellInflater for Java Client

	5. Efficiency Evaluation
	5.1. Compression with Java.util.zip
	5.2. Compression with Cell/B.E. Server
	5.2.1. Compression Time Components
	5.2.2. Cell Server Total Time
	5.2.3. Java Client Time

	5.3. Comparison and Conclusion

	6. Outlook
	A. Appendix
	A.1	Source Index
	A.2 Table Index
	A.3 Graph Index
	A.4	Abbreviations and Definitions

