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Executive Summary

The Java package java.util.zip provides classes for reading and writing the standard ZIP and 

GZIP  file  formats.  In  certain  situations,  this  compression  and  decompression  require  a 

significant portion of the overall CPU capacity.  This thesis analyzes a given Java workload on 

System  z  that  heavily  uses  compression  and  proposes  a  design  that  leverages  network-

connected Cell/B.E. servers to perform the actual compression task, thus offloading these CPU 

cycles from the System z. To realize this, the server takes a Cell version GZIP compression 

utility as a library tool and optimizes its data access for better performance. This design is 

implemented prototypically by having client-side Java programs communicating with the Cell 

blade  server.  After  evaluating  their  efficiency  at  different  compression  volumes,  it 

demonstrates that this offload implementation is successful and well-profitable for System z. 
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1. Introduction

1.1. IBM System z in a Hybrid Platform

In today's world, Information Technology is woven into every aspect of our lives. The demand 

for robust, efficient, flexible and autonomic computer systems are greater than ever, driving us 

to develop more secure, scalable and stable computer systems with even higher performance. 

The mainframe computers of IBM stand firmly as the number one computer system solutions 

ever since their inception a half  a century ago, taking a unique roll serving various needs 

around the world. 

Mainframe computer systems are most often used by large and middle-sized organizations 

which impose high specifications for their critical applications, that is,  applications with a 

need  for  high  availability,  scalability,  security  or  applications  that  have  been  running 

faultlessly  since centuries,  that  hold a  high market value  and that  are  not to  be  replaced. 

Failure to meet these requirements would essentially result in a loss of market as well as a loss 

of customers. These requirements are thus significant and usually decisive to the fate of an 

organization and therefore never to be underestimated.

A good example is the applications of a bank. It requires a technology-based system that is one 

hundred percent secure, that remains stable at all times that never makes a mistake, thereby 

avoiding  those situations which a normal computer system often fails at. These requirements 

have their reasons: A bank has to handle a high amount of data transactions on a daily basis 

like the on-line queries of their many clients, drawing money at a bank machine, doing a wire 

transfer, paying at the supermarket or banking via Internet. These transactions and queries 

must be executed one hundred percent correctly and often need to be accomplished in real-

time. The system should be able to foresee, recognize and also handle these tasks during peak 
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times,  for  example  before  Christmas  or  during  holidays,  taking  corrective  measures  like 

distributing the  workload to  other  machines horizontally  or vertically  to  ensure quality  of 

service. Since some system tasks are more critical than others, the system should be able to 

handle these based on task priorities. Some work is to be done within milliseconds,  some 

within seconds, others within minutes and some other non-critical jobs within a day or two. 

As globalization is bringing the world closer together, the machine can not anymore take its 

official “night break” as it did years before and has to practically run all 24 hours of the day,  7 

days a week. A machine like this needs to manage many maintenance tasks without having to 

be  shut  down.  The  work  of  software  installation,  system updates  and backups  should be 

accomplished when the system is “live” at work. Meeting these requirements demands much 

know-how and a high sophistication of the built-in mechanism.

The  IBM  System  z  computers  fulfill  and  offer  thought-through  solutions  for  these 

requirements.  These machines are highly reliable and practically never need to be shut down, 

not even during an operating system installation. Once correctly configured, the system stays 

extremely secure under the safeguard of its unique hardware architecture and the protection of 

its  comprehensive  software  mechanisms.  The  built-in  workload  management  provides 

constant monitoring in order to achieve performance goals. Through defining system policies, 

the decision maker of an organization can configure the system to reflect the requirements of 

the  organization.   System  z  supports  strict  backward  compatibility  to  the  System/360 

generation. Old applications that ran on a 360 machine decades ago can flawlessly run on the 

newest generation of System z, which is, at the moment this article is written, z10 (also called 

eClipz). A System z can run a diversity of operating systems and share data amongst each 

other as members of the same body. A single System z machine is therefore able to replace 

many smaller servers providing higher scalability and reliability and saving operational costs. 

At energy prices soaring, System z also stands out as a green solution by using energy more 

efficiently. According to a Robert Frances Group study, a company analyzed the consolidation 

of hundreds of UNIX servers to one System z mainframe. The calculations showed monthly 

power  costs  of  $30,165  for  the  UNIX servers  versus  $905  for  System z.  That  company 
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calculated they would save over $350,000 in power costs annually [z01].

The only disadvantage of a System z is that its CPU cycles are relatively expensive. Due to the 

sophistication of hardware and software behind it, computation on a System z can never be 

priced as low as the less well-equipped server systems. Through introducing simplified CPU 

models of ZAAPs, ZIIPs, IFLs, etc., hosting on System z is not as expensive as before. It is 

however still  too costly for smaller sized companies, although some would achieve higher 

efficiency by utilizing IBM technology. Dedicated to solve this problem, the hybrid system 

has come into being which allows some less expensive co-systems to be combined with z, 

taking  over  part  of  its  off-loadable  computation.  Cell,  AMD and Intel  processors  are  all 

candidates  for  an  accelerator  system. Through moving some compute-intensive  workloads 

onto the Cell blade systems, the IBM hybrid system can achieve a higher scalable performance 

and offer a more affordable price.

1.2. Purpose of Thesis

The purpose of this thesis is to analyze the feasibility and effectiveness of such an offload 

system using the Java compression mechanism. Java compression and decompression can in 

certain situations cause cause significant CPU load. A co-system that offloads the compression 

cycles of System z should help to achieve a better general performance. This thesis analyzes 

the feasibility of an offloading concept, proposes a design and then evaluates the efficiency of 

the design.

1.3. Structure of Thesis

Chapter two offers a short introduction of the Cell processor, the Cell/B.E. structure and its 

programming concepts. It also takes a glance at the IBM Cell blade and Linux on the Cell 

operating system that build up the test environment of the offload design.  It then looks into 

the requirements of on-line gaming and proposes the hybrid system solution by illustrating the 

necessity  of  the  compression  offloading  concept.  It  furthermore  explains  the  reason,  why 

hardware based compression offloading is not appropriate. 
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Chapter three introduces the widely used open source zlib library, its algorithms, data format 

and efficiency. It also introduces the gzip utility implementing a zlib version that is optimized 

for the Cell processor. 

Chapter four analyzes the necessity and ways of further optimization of the gzip utility for the 

offload purpose and describes its workflow. It implements the hybrid design prototypically, 

the  client  and  server  communicating  through  the  network  socket  pairs.  Furthermore  it 

illustrates the key points of the programming code on both sides of the system. 

Chapter five evaluates the efficiency of the socket design at different compression volumes 

and compares them with Java's original compression performance. It concludes that this is a 

well-profitable hybrid design for offloading purpose. 

Chapter six gives an overview how the results of this thesis could be used for further research 

endeavors.
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2. Java Compression Offload Background

2.1. Cell Processor

2.1.1. Cell Processor Isn't Just for Games

The Cell processor was jointly developed by the “STI” design center, an alliance between 

Sony Computer  Entertainment,  Toshiba  and IBM. The project  was  originally  designed to 

bridge the gap between the desktop processors (like AMD's Athlon64, Intel's Core 2, etc) and 

the high-performance processors that are most widely used in scientific applications. The Cell 

processor has taken even more of the world programmers' attention ever since the  PlayStation 

3 (commonly abbreviated PS3) was launched in November 2006, the third generation of the 

home video game console from Sony. The Cell processor is however not only good for games. 

Its special architecture makes it an outstanding processor for running compute-intensive tasks. 

MPR Analysts’ Choice Award rated the Cell processor in its Microprocessor Report1 [cell01] 

as the “Best High-Performance Embedded Processor of 2005” : 

“We chose the Cell BE as the best high-performance embedded processor of  

2005 because of its innovative design and future potential.... ”

One of Forbes' articles in January 2006 titled “Holy Chip” wrote [cell02]:

“IBM's radical Cell processor, to debut in Sony's PlayStation 3, could reshape 

entertainment and spark the next high-tech boom... Cell could power hundreds 

of new apps, create a new video- processing industry and fuel a multi-billion-

dollar build out of tech hardware over ten years.” 

IEEE Spectrum's special issue “Winners and Losers 2006” wrote [cell03]:

1 Magazine  Microprocessor  Report  is  a  premiere  reference  material  for  detailed  explanations  and  in-depth 
knowledge of new high-performance microprocessors. 

11



2. Java Compression Offload Background

“It was originally conceived as the microprocessor to power Sony's PS3, but it is  

expected to find a home in lots of other broadband-connected consumer items and 

in servers too.”

The Cell processor has ever since been spreading rapidly in a growing range of computing 

areas. Industry foresees the Cell processor playing a role in mobile phones, high-definition 

digital  televisions  (HDTV),  hand-held  video  players  and  more.   Stanford  University  is 

building a Cell-based supercomputer. Cell is also utilized in military missile systems and in 

medical imaging machines. The IBM's QS series Blade Server utilizes two Cell processors 

jointly working with each other - the newest market version QS22 has just been released in 

May 2008. The most recent news of Cell’s application is in IBM's supercomputer Roadrunner, 

a hybrid design with 12,960 Cell processors and 6,480 AMD Opteron dual-core processors. It 

reaches a peak performance of 1.7 petaflops and stays at the top of the TOP500 list [cell08].

2.1.2. Cell and the “Three Challenges”

Stanford's Professor Bill Dally has a nice analogy that explains the memory wall problem that 

general purpose processors have run into. He lets you imagine that you are doing a plumbing 

project. As you start the work, you notice that you need a pipe. So you drive to the store and 

buy the pipe. Once back with the pipe, you discover you need a fitting. So you drive to the 

store  again  and  purchase  a  fitting.  Then  you  discover  that  you  also  need  to  solder  both 

together... This wasn't such a problem 30 years ago as reading the memory only cost several 

processor cycles. But nowadays reading main memory costs much more as it can take up to 

hundreds of processor cycles, so reading memory is becoming more like driving hours to buy 

one thing at a plumbing store. 

Although the conventional processors try to solve the above problem with cache, they cannot 

avoid the situation that a cache miss happens. In this case the CPU stalls and has to wait for 

the data to be fetched. At each stall the processor waste hundreds of cycles. The result of this 

architecture is that application performance is in most cases limited by memory latency rather 

than by peak compute capability. Statistics show that the processor can spend up to 80% of its 
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time waiting for memory. The problem gets worse with the dual-core CPUs. When the cores 

try to access the same memory address, the data in the cache gets out of date and needs to be 

updated. To do this involves a lot of logic, takes a lot of time and the more cores the system 

has, the more complicated the problem will get. 

 

The Cell processor solves this problem by making something like a shopping list. Each SPE 

(Synergistic Processing Element) is equipped with a series of cache-like Local Stores. Instead 

of getting data from main memory every time it is needed, the SPUs (Synergistic Processing 

Unit) construct a list of the needed information and go get the data from the main memory 

through DMA transfer  all  at  once.  The  processors  can  then  be  kept  working as  much as 

possible. The SPE processor cannot access the main memory directly. This avoids applying 

the  complexity  of  the  caching  mechanism  and  delivers  data  to  the  SPE  registers  at  an 

extremely high speed, making the data to be processed at a cache speed inside a SPE. The 

three-level data transfer of register file, local store and the main storage with its asynchronous 

DMA transfers  between  the  local  store  and the  main  storage  is  a  major  breakthrough  in 

processor  architecture,  resulting  in  the  extreme  parallelization  of  computation  and  data 

transfer. The challenge left to the programmer is to feed the SPEs with enough data to achieve 

peak performance.

The above was one of  the “Three Challenges”  that  confronted the developers of  the  Cell 

processor. The other two main challenges of the chip development were the power wall and 

frequency limitation. To achieve high processing power, the engineers could have typically put 

more  transistors  on  the  chip,  resulting  in  a  heat  increase.  The  Cell  engineers  solved  the 

problem by allocating different functions to the processors. Power efficiency was improved 

instead  of  increasing  the  complexity  of  the  hardware.  A  general-purpose  PPE  (Power 

Processor  Element)  runs the  operating system while  eight  special  SPEs run the  compute-

intensive  tasks.  They  developed  specially  adapted  software  tools  like  more  intelligent 

compilers (gcc, XLC), so that the burden to the chip hardware could be reduced. 

To conquer the frequency wall problem, a combination of hardware and software optimization 
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was applied. The Local Store of a SPU allows large shared register files which increase the 

processing speed significantly. More software controlled branching was built in which made 

deeper pipelines possible.

The efforts bring out good results. The Cell processor achieves approximately ten times the 

peak performance of a conventional processor that uses up the same amount of power. As to 

the actual application performance, some applications benefit less from the SPEs while some 

others show a performance increase of more than 10 times.  In  general,  compute-intensive 

applications that use 32-bit or smaller data formats are the most suitable candidates for the 

Cell BE and can expect higher performance on the Cell.

2.1.3. Cell/B.E. Architecture

The Cell processor's unique structure is the contributive factor that enables the PPE's intensive 

relationship with the SPEs thereby delivering high performance for number-crunching tasks, 

like Fourier analysis, decoding and encoding of stream processing, real time ray tracing, etc. 

All  these  tasks  require  a  huge  amount  of  calculation  and  a  certain  supercomputing 

characteristic of the processor.

The Cell processor is composed of one 64 bit PPE and eight specialized co-processor SPEs. 

The PPE is a conventional power architecture core, for example it could be a PowerPC or 

other POWER processors. The PPE is good at running control-intensive tasks and quick at 

task switching and is usually used to run the operating system and most of the organizational 

work of an application. The PPE contains a PPU for calculation, an L1 cache for data and 

instruction and an L2 cache memory. SPEs, the SIMD processors of the Cell, are built to carry 

out intensive mathematical work. SIMD stands for Single Instruction Multiple Data, indicating 

SPE's capability of doing multiple operations simultaneously with a single instruction. An SPE 

consists of the SPU, the Local Store, and the MFC (Memory Flow Controller). The Local 

Store is a 256 KB on-chip memory that allows the local storage of data. MFC works as a 

gateway taking care of the communication between SPE and the other elements on the chip. 

Each SPU processor contains a dedicated DMA management queue capable  of scheduling 
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long sequences of data transfer between various endpoints without interfering with the SPU's 

computations. Furthermore the Cell/B.E. structure has a BIC (Bus Interface Controller) that 

takes control to all the i/o devices and a MIC (Memory Interface Controller) that supports two 

memory channels.

Elements are connected together with an internal high speed bus EIB (Element Interconnect 

Bus)  and  work  intensively  together  like  a  small  cluster  of  processors  inside  the  chip. 

EIB  is  implemented  as  a  circular  ring  with  four  128  bit  unidirectional  channels.  Each 

participant  of  the  bus  has  a  read  port  and  a  write  port  which  allow  a  point  to  point 

communication that is easy to scale. EIB is optimized for transferring huge data streams. 

This unique architecture of the Cell processor is named Cell/B.E., an abbreviation for Cell 

Broadband Engine and is illustrated in the following depiction:

 Graph 1: Cell Broadband Engine Architecture 

 Source: J. A. Kahle, Cell Broadband Engine Architecture [g01]
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The  Cell  processor's  special  structure  contributes  to  its  incredible  data  processing 

performance. The introductory design of 90 nanometer technology is able to reach a peak 

processing speed of over 200 billion floating point operations (200 Gflops)  per second in 

comparison  to  26  Gflops  for  a  Pentium 4 and 77 Gflops  for  a  XBox 360 [cell02].  IBM 

announced in 2007 the production of 65 nanometer version of Cell BE and in Feburary 2008 

the production of 45 nanometer version. At 45nm the Cell processor will reach the processing 

speed of one teraflop per second.

2.1.4. Cell Programming

A typical programmer basically has two kinds of situations when starting a Cell project. One is 

when he wishes to write a completely new application to  run on the Cell processor; the other 

is, as is more often the case, when he has an existing application that runs on a PowerPC 

architecture core and wants to bring that application onto the Cell, thereby needing to rewrite 

part of the code in order to take advantage of the Cell's SIMD capabilities. Both situations 

require  a  detailed  analysis  of  his  code  in  order  to  identify  where  the  compute-intensive 

repetitive tasks are and which of those could be offloaded onto SPEs. Too large algorithms or 

algorithms which jump randomly, accessing small pieces of data are not suitable to run on the 

SPEs. Vectorizable and parallelizable algorithms are in contrast well suited for them. Once this 

is figured out, he can start writing the code for the PPE and the SPE separately, or in the 

second situation, partition the movable code for the SPEs from the rest and move this over. 

The partitioning usually means quite some work and requires the year-long experience of a 

programmer.  This  is  the  so-called  PPE-centric  model,  the  most  often  used  model  for 

partitioning an application, with the main application running on the PPE and individual tasks 

off-loaded to the SPEs. The PPE then expects and coordinates the results returned from the 

SPEs. The tasks distributed to the SPEs could be multistage-pipelined, parallel-pipelined or 

service-oriented. In the multistage-pipelined model, one SPE's working result is sent to the 

next SPE stage to be processed and the SPE at the end of the stage completes the calculation 

circle and sends the final result to the PPE. In the parallel-pipelined model, the working data is 

divided into similar sizes and sent to the SPEs that all  implement the same algorithms to 
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process the  data.  Each SPE's output will  be returned to  the PPE,  which is  responsible  to 

reconstruct the data in the right order. In the service oriented model, each SPE implement a 

different algorithm as their  unique services and the PPE alone is responsible  to the SPEs' 

returned  data.  The  PPE-centric  model  is  most  suitable  for  an  application  working  with 

streamed data with a need of parallel computation. 

Another less often used model is the SPE-centric model where most of the application’s code 

is distributed among the SPEs. The PPE acts as a centralized resource manager. Each SPE 

fetches its next working item from the main storage (or its own local store) after completing 

its current work. This model is suitable for applications that need little organization from the 

PPE.

The SPEs are  designed to  be programmed in high-level  languages,  such as C/C++.  They 

support  a  rich  instruction  set  that  includes  extensive  SIMD functionality.  However,  using 

SIMD data types is not mandatory - a rich set of language extensions that define C/C++ data 

types for SIMD operations are also available for the programmers. These extensions allow 

them great control over code performance, without having to deal with the complexity of 

assembly language.

A  rife  development  environment  already  exists  for  Cell  programming  Beside  code 

development tools,  there are debug tools, performance tools and miscellaneous tools like the 

IDL Compiler. There is an SPE Management Library that supports creating and destroying 

SPE threads and regulating them for inter-thread communication. There is also a hypervisor 

available that allows different operating systems to run as different partitions on the same Cell 

hardware. A system simulator is available which facilitates code development without Cell 

hardware. 

2.1.5. Linux on Cell

Several  versions  of  the  Linux  operating  systems  have  already  been  brought  to  the  Cell 
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processor, RPM2 based Fedora distribution amongst others. The Linux operating system has a 

built-in socket interface that enables the Cell system's networking with other computers based 

on the TCP/IP stack. Sockets communication on this level is fast and uncomplicated and it is 

the  most  preferable  networking  solution  for  a  system  whenever  performance  becomes  a 

critical factor. Other ways of communication are also available for the Cell. On the higher 

layers  of  the  ISO/OSI  model,  RPC  (Remote  Procedure  Call),  RMI  (Remote  Method 

Invocation) etc. can also be implemented depending on the system requirement. More on this 

will be found in Chapter four. 

2.1.6. The Cell Blade

Since the introduction of the first Cell blade server QS20 in 2005, the Cell based blades have 

now reached their third generation. The experiments of this thesis were carried out on the 

second generation Cell blade QS21. Here is a brief overview of its key hardware features:

• two 3.2 GHz Cell/B.E. processors 

• 2 GB XDR memory (1 GB per processor)

• two Gigabit Ethernet ports 

• one  high-speed  expansion  slot  for  two  additional  ports  for  10Gigabit  Ethernet  or 
InfiniBand 4X

• InfiniBand adapter 

2.2. Linux on System z

System  z  is  the  most  trustworthy  computing  system  to  date.  An  increasing  number  of 

organizations are adopting the technology, many Linux environment users amongst others. 

Linux on System z is a big defender of Linux's open source values and the code is completely 

open to users under the GNU GPL (GNU General Public License). It is considered the leading 

driver that encourages adoption of the Linux environment among business and governments. 

Linux on z combines the advantages of System z with the flexibility of the Linux operating 

system, building a scalable,  secure,  highly available  and cost-effective structure.  It  further 

2 RPM stands for RPM Package Manager, a package management system originally developed by Red Hat Linux, 
now widely used in different Linux distributions. 
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helps  to  simplify the  IT infrastructure  which again  reduces  operating costs  and promotes 

quicker deployment of new solutions to accelerate time to market. The less expensive hosting 

on  z/Linux  is  achieved  mainly  through  applying  the  much  lower-priced  IFL (Integrated 

Facility for Linux) processors dedicated to  running Linux. Comparing with the traditional 

general purpose engines – the CPs (Central Processors), IFL has a simplified structure and is 

optimized for the Linux operating system.

2.3. Games on System z

2.3.1. Project Gameframe

In April 26, 2007 IBM announced a cross-company project “Gameframe” cooperated together 

with the Brazilian game developer Hoplon Infotainment. Hoplon is a leading developer of 

multi-player on-line games implementing complex real-world simulations. The project’s aim 

was to bring Hoplon's online science fiction massive social game - Taikodom to run under a 

hybrid system of z leveraged network-connected Cell/B.E.. 

      Graph 2: Massive Social Game Taikodom from Brazilian company Hoplon 

Source: Jochen Roth, IBM, Nov. 2007. Gameframe_4AcademicDays_20071106.ppt [g03]
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2.3.2. MMOG Games Requirements

The number of players of MMOG (Massive Multi-player On-line Game) has been growing 

exponentially in the past ten years, reaching a registered number of 13 million. Taikodom, one 

of the MMOG games, also foresees a fast growth. The game simulates a virtual world of outer 

space  with  gamers  playing  with  each  other  in  order  to  fulfill  certain  missions  under  a 

persistent online environment. The gamers practice real-time interaction with each other and 

are actually playing the game “together” from their home client terminal. All MMOG games 

impose the following high demands on its server environment:

Requirement 1 - Real-time interaction and massive I/O throughput:  As there are thousands of 

gamers  connected  by  the  Internet  who  interact  with  each  other  through  the  server-based 

service, there is an extremely high amount of data being sent back and forth between the two. 

Even though the data is usually compact, the huge number of players cumulates in an equally 

huge amount of data. Due to the user’s relatively low connection rate, the data is often first 

compressed at the local client level before it is sent to the server. The server therefore needs to 

decompress  this  before  analysis  can  occur.  Compression  and  decompression  in  this  case 

reduce transfer time and help to improve system performance. The data analysis of the server 

consists  mainly  in  evaluating  the  progress  according  to  user  input  and  calculating  the 

interaction between the gaming users. The results are returned compressed to the client and the 

client  program displays  it  uncompressed at  its  terminal  graphically.  The  more  players are 

involved in a game, the more voluminous the computation becomes and the more difficult it is 

to display the interaction in real-time. A game will not attract more gamers when noticeable 

latency begins  to  show up.  The  server's  ability  to  handle  the  requirements  of  its  gamers 

becomes the vital factor of its success. 

Requirement 2 - On-demand scalability: Even if a server system can easily handle the peak 

amount of gamers today, it is already confronted with the performance levels it will need to 

handle several months later, as the number of on-line gamers daily grows, much faster than 

any architecture or technician can actually react to. This forces the system to recognize the 
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high workload and scale on-demand by distributing the work vertically and horizontally to 

other  server  nodes  in  an  intelligent  manner.  The  system  needs  to  dynamically  support 

additional nodes in order to circumvent oversaturation. When during a holiday the number of 

players exponentially  grow – a  positive development,  the server  needs  to  have  the  added 

dynamic capacity so that gamers won't be disappointed – a negative development!

Requirement 3 - High availability:  As most games are intended for international clients that 

live  in  different  time  zones,  the  server  is  not  supposed  to  be  shut  down  to  restart  for 

maintenance, installation or for any other reasons. The server should not encounter crashes 

and is supposed to run stable without scheduled downtime - zero downtime is expected. 

Requirement 4 - Security. With the evolution of the Internet, onl-ine crime is becoming a 

serious issue throughout the world. Gamers are with no exception confronted with the danger 

of data theft and the game servers will continue to be an attractive target for hackers. A game 

server should thus be technically heavy-armed and remain pervasive to avoid any loss of client 

data. 

Requirement 5 - High Speed. The server should remain agile as it faces massive computation-

intensive tasks. Taking Taikodom as an example, the server needs to implement for instance a 

significant amount of real-world simulation and security processing. Real-world simulation 

occurs when it needs to calculate the characteristics and reactions of the outer space objects 

based on physical law: A ball thrown in a virtual world must obey the laws of gravity. An 

explosion would only look “real” to the gamers when the objects fly the same way as they 

would in reality. When a spaceship moves forward at nearly light speed, the objects it passes 

over will look extended and the elapsed time shown on its devices will have to be calculated 

slower. The server also requires to do data compression to reduce transfer volume. Both the 

compression  and the  physical  simulation  involve  much  computation  and consume a  high 

percentage of the system's computing power. This requires from the the server a certain super-

computing capability to qualify. 
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2.3.3. Cell Blade and System z: A Perfect Hybrid Platform

The hybrid platform of IBM’s System z connected with the Cell Blades is a optimal synergy 

that  fulfills  the  above  requirements.  System z  provides  the  highest  level  of  security  and 

massive  workload  handling,  assuring  the  execution  of  its  administrative  tasks  and 

guaranteeing an enduring connectivity to a huge number of clients. Cell/B.E. takes over the 

most resource demanding calculations thus enabling the System z to fulfill its job. 

This combination is an effective and financially attractive game server system, as the most 

compute-intensive tasks are offloaded from the expensive CPU cycles of z and are carried out 

on the much more economical Cell blades.  Without offloading,  the server system required 

would will end up costing too much and would not be financially feasible. 

System z and the  Cell  Blades of  the  testing environment  were connected through gigabit 

Ethernet. Higher data transfer speeds at the physical layer through Infiniband are still under 

experimentation.

2.4. Hardware Compression Mechanism of System z

As data compression can be implemented in either software or hardware, there comes the 

question  if  the  compression  work could actually  be done  by the  hardware  mechanism of 

System z that already exist widely (for example under z/OS operating system), saving the 

effort  of  implementation  in  software.  System  z  has  an  auxiliary  processor  that  provide 

solutions  for  the  compression  requirements  based  on  a  LZ  algorithm.  By  implementing 

compression on hardware it could bring advantages like: 

• running faster

• being less expensive

• black box principle

• offloading the main processor
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The followings is a short introduction to the hardware compression mechanism of System z. It 

illustrates the answer to the question, why the z hardware compression facility could not have 

been the solution for the compression job.

Two main components are required to activate hardware compression: the compression call 

instruction (CMPSC) and the compression dictionaries. CMPSC is based on Lempel-Ziv 2 

(LZ2 or LZ78) algorithm and specifies via general registers the source operand address and its 

length, target operand address and its length, the location of the dictionary, and the indication 

of the operation (compression or decompression). According to IBM Redbook [z03] CMPSC 

can be used to compress any randomly or sequentially used data, as long as there is some 

degree of repetition of character strings. CMPSC also has a symbol translation option that 

allows  the  instruction  to  be  used  to  compress  network  data.  CMPSC  uses  two  static 

dictionaries for  compression and decompression,  that  must  be  prepared and read into the 

memory beforehand. This is usually done by a special program that read some sample data 

and create  the  dictionary  out  of  it.  The  performance  of  the  compression  will  directly  be 

affected by the quality of the dictionary.

The hardware compression mechanism of CMPSC does not bring a solution to the current 

System z platform that runs z/Linux as the operating system. There are generally two main 

problems:

• Compatibility problem. Although CMPSC is used very much under z/OS, it can not be 

implemented  on  a  Linux  environment.  The  compression  format  that  CMPSC 

instruction  support,  is  not  compatible  to  the  standard  compression  algorithms  of 

Linux.  Linux  environment  supports  compression  and  decompression  standards 

like .gz, .bzip2, and .zip. Function gzip and zip implement LZ77 (LZ1) algorithm, a 

patent-free compression algorithm. Bzip2 implements a patent-free algorithm as well 

which combines several layers of compression for implementing on top of each other, 

including  Borrows-Wheeler  Transform  and  Huffman  coding.  CMPSC  however, 

implement the patent-protected LZ78 (also named LZ1). This furthermore conflicts 

with Linux's patent-free principle and was thus never an implementation on Linux.

23



2. Java Compression Offload Background

• Dictionary problem. Static dictionaries are applicable only when the content of the 

data to  be compressed is known beforehand,  or when most of the key words that 

would  exist  in  the  data  are  predictable.  This  is  especially  useful  for  example  in 

database compression, since all field names are known beforehand and entries could 

be foreseen. It is very hard to construct an efficient static dictionary without knowing 

the contents of the data. In cases like this, the dictionary has to be built dynamically. 

They have to be created during compression to fit the input data. In the hybrid system 

of  this  project,  since the data  from the  client  could appear  in  any format  and the 

content varies from case to case, there is no way to specify a general compression 

dictionary that works for all situations that guarantees a good compression result all 

the time.
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3. Architecture and Compression Library

3.1. System Architecture

In  the Gameframe project,  the server system is a combination of mainframe and the Cell 

blades, both of which run Linux. The blades are plugged into System z and are connected with 

it through a one gigabit Ethernet connection. Several Cell blade servers takes over physics 

simulation. Another blade server is reserved for compression and decompression. The gamers 

access the game server from their home client through the Internet. Upon receiving client data, 

System z sends the packets to  the Cell  blade for unpacking and the Cell  blade sends the 

decompressed data back to System z. After finishing its work, System z lets the Cell blade 

compress the data again before forwarding the results to the clients. The architecture of the 

whole System is represented in the graph below: 

                Graph 3: System Architecture of Gameframe with Cell blades for offload

The  above  is  only  a  simplified  structure.  A demilitarized  zone,  the  so-called  DMZ,  a 

subnetwork that exposes the services to the Internet, prevails between the client and System z. 

The DMZ is an additional layer of security for the organization's LAN (Local Area Network). 
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Although not illustrated in the graph, the demilitarized zone separates the Intranet from the 

Internet, is essential and cannot be omitted. 

3.2. Zlib Library and the Deflate Algorithm

3.2.1. Background

Data compression is no new topic, and compression algorithms have seen little advance for 

the last years. Compression algorithms can be generally divided into 

• lossless data compression

• lossy data compression

Lossless  data  compression  allows  the  exact  reconstruction  of  the  original  data  from  the 

compressed data and should be used when the source data and decompressed data have to be 

identical. Text-based data is mostly compressed in this way. Examples of lossless compression 

algorithms  are  Run-length  encoding,  Lempel-Ziv  family  (LZSS,  LZW,  etc.),  Deflate 

algorithm, PNG, TIFF, etc.  

Lossy data compression converts the data within defined tolerences. It is most commonly used 

to compress multimedia data (audio, video and graphic).   

3.2.2. Deflate Algorithm

Zlib  compression  library  was  written  by  Jean-loup Gailly  (compression)  and Mark  Adler 

(decompression) and is designed to be a free, general-purpose lossless compression library 

without  being covered by  payment  liable  patents.  Zlib  implements  Deflate  algorithm and 

achieves typical compression ratios between 2:1 and 5:1. Theoretically zlib can in extreme 

cases  reach  a  compression  factor  of  1000:1  [zlib03].  Zlib  is  widely  used  under  different 

platforms and for different languages, such as zip and gzip tools under Linux, Winzip under 

windows, java.util.zip package in the Java language, etc. 
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The Deflate algorithm is a lossless compression algorithm that uses a combination of LZ77 

and Huffman Coding. Deflate algorithm is widely used in different libraries because of its 

good performance and its guarantee of never expanding the data, in comparison with LZW, 

which in extreme cases doubles or triples the file size.  

LZ77 works based on a sliding window principle which slides through the whole text. The 

window consists of two buffers: one search buffer, and one preview buffer. The search buffer 

contains the text fragment that the program has worked on and serves like a dictionary. The 

preview buffer contains the text that needs to be compressed. To construct the compression 

data,  LZ77 looks through the search buffer  -  when the next  sequence of characters to  be 

compressed in the preview buffer is identical to that can be found within the search buffer, the 

sequence of characters will be represented by two numbers: an offset, suggesting how far back 

into the search buffer the sequence starts, and a length, suggesting the number of repeated 

characters.  During  compression,  a  hash  table  is  constructed  to  enable  a  faster  searching 

process.  The  size  of  the  buffers  has  to  be  set  beforehand.  A bigger  buffer  size  makes 

compression of a higher ratio possible,  but would take longer time. A smaller  buffer size 

enables the compression algorithm work faster, but won't reach a ratio as high. The libraries 

that implement LZ77 usually gives the user the possibility to set the level of compression 

according to their wish. The following gives an example of compressing the byte sequence of 

“abcamanand” with LZ77. 

Distance Length Symbol

abcamanand 0 0 'a'

a bcamanand 0 0 'b'

ab camanand 0 0 'c'

abc amanand 3 1 'm'

abcam anand 2 1 'n'

abcaman and 2 2 'd'

Table 1. LZ77 compression
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Huffman coding is based on the frequency of occurrence of the characters. The characters that 

occur more frequently will be encoded with a lower number of bits - the less frequently with 

higher  -   through  a  tree  structure  where  each  leaf  indicates  a  character.  The  algorithm 

constructs at the end a so-called Code Book that serves as a reference for decoding. Huffman 

coding compresses typically between 20% and 90% of the original data.

3.2.3.  Gzip File Format Specification RFC 1952

Table 2: Gzip file format 

Source:  Gzip File Format Specification version 4.3, [rfc1952]
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     +---+---+---+---+---+---+---+---+---+---+

         |ID1|ID2|CM |FLG|     MTIME     |XFL|OS | (more-->)
         +---+---+---+---+---+---+---+---+---+---+

      (if FLG.FEXTRA set)

         +---+---+=================================+
         | XLEN  |...XLEN bytes of "extra field"...| (more-->)
         +---+---+=================================+

      (if FLG.FNAME set)

         +=========================================+
         |...original file name, zero-terminated...| (more-->)
         +=========================================+

      (if FLG.FCOMMENT set)

         +===================================+
         |...file comment, zero-terminated...| (more-->)
         +===================================+

      (if FLG.FHCRC set)

         +---+---+
         | CRC16 |
         +---+---+

         +=======================+
         |...compressed blocks...| (more-->)
         +=======================+

           0   1   2   3   4   5   6   7
         +---+---+---+---+---+---+---+---+
         |     CRC32     |     ISIZE     |

               +---+---+---+---+---+---+---+---+
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The Deflate algorithm uses the advantage of both LZ77 and Hufmann algorithms and turns out 

to  be  one  of  the  most  popular  lossless  compression  algorithms  in  wide  use.  Gzip  utility 

implements the Deflate algorithm and the zlib library to compress and decompress data based 

on files. According to RFC 1952 the gzip file format is specified in the above Table 2. Here 

are some important notifications to the specification: 

• ID1 and ID2 stand for  identification  1 and 2,  specifying the  file  as  being in  gzip 

format. 

• CM  stands  for  compression  method.  It  is  set  to  8  when  the  Deflate  compression 

algorithm is used.

• FLG are the flags

. bit  0 FTEXT :  Setting FTEXT usually denotes an ASCII text file.  This flag is 

usually cleared if binary data is involved.

. bit 1 FHCRC: If this is set, it denotes the use of the CRC16 version.

. bit 2 FEXTRA : Ff this is set, it signifies the existence of optional extra fields. 

. bit 3 FNAME : Specify whether an original file name is available. 

. bit  4  FCOMMENT  :  When  set,  denotes  the  existence  of  a  zero-terminated 

comment.

•  MTIME stands for modification time.

•  XFL stands for extra flags.

•  OS stands for the operating system. 

• CRC32 denotes the Cyclic Redundancy Check value of the uncompressed data. 

• ISIZE stands for input size and contains the size of the original (uncompressed) input 

data. 

3.3. The Zlib Library Optimized for the Cell Processor

3.3.1. Introduction

Zlib library is written for a sequential environment. By optimizing it for the Cell blade one 
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needs to have a thorough understanding of the library’s functionality in order to exploit Cell's 

unique architecture. The library has been optimized by Seunghwa Kang, a Ph.D. student from 

Georgia Tech [zlib04]. An example application named minigzip demonstrates the performance 

and the use of the Zib library optimized for the Cell processor. Sourceforge [zlib05] presents 

the source code for both the library and the gzip utility. Two compiled binary executables for 

minigzip application are offered to run on a Cell blade environment with or without the SDK. 

The library offers a command-line user interface. User need to specify the name of the file to 

be compressed and the variables if needed. After the compression a new file with extension 

“.gz” is generated in the folder. The program offers the user the possibility of specifying the 

compression level (from 1 to 9),  the block size (from 100 to 900 KB) and the maximum 

number  of  SPE  threads  that  will  be  generated  for  compressing  each  file  stream.  For 

decompression user uses the same command with flag '-d' added ahead of the file name. 

3.3.2. Optimization Analysis

Parallelizing the zlib library on the Cell processor is not easy. Zlib has a high dependency on 

data processing and the way the algorithm accesses the data makes it difficult to parallelelize. 

Basically the following points prohibit a good parallelization of the code [zlib06]:

• Data that is compressed by LZ77 is a mixture of literals and numbers that indicate 

length and distance (see table 1). In order to find out what the next symbol is,  the 

symbol that is before it has to be identified first. This sets a limitation for the Cell to 

parallelize it. 

• Decompression of data processed through the Huffman algorithm also builds on data 

dependency which needs to be processed sequentially.  This is due to  the character 

symbols that are encoded with different bit lengths. The length cannot be known when 

the characters before is not yet decompressed. 

• Both the LZ77 and Huffman algorithms require a great amount of table lookups. This 

happens for instance when the LZ77 algorithm looks for the identical literals in the 

search buffer or when the Huffman-coded data runs the decoding process. This process 

cannot be vectorized since the Cell SPE does not support this type of random memory 
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accessing. 

• Another point is the difficulty of branch prediction. Branches always strongly depend 

on the input. Well compressed data contains a great percentage of numbers (see table 

1) indicating the length and distance of the indexed content in the sliding window. Poor 

compressed data, on the contrary, contains lots of literals and less numbers. This results 

in different branch behaviors and reduces the performance for the zlib library when 

running on the Cell. 

According  to  Kang,  the  following  optimization  of  zlib  code  for  compression  and 

decompression has been achieved for zlib running on the Cell bladeAccording to Kang, the 

following optimization of zlib code for compression and decompression has been achieved for 

zlib running on the Cell blade [zlib06]:

• Calculation of the hash key using the three bytes starting from the inserting byte at 

compression

• String  comparison  of  LZ77  using  SPE's  16  byte  byte-wise  vector  comparison 

instruction at compression

• Vectorization of the window update loop of LZ77 at compression

• Vectorization of table construction at decompression

• Vectorization of CRC calculation algorithm and Adler32 algorithm (an alternative to 

CRC) of decompression

• Identification of computation-intensive loops and applying loop unrolling

• Static branch hinting

• Separation of compression and decompression routines to reduce memory usage

The gzip utility, by implementing zlib library, is data-dependent as well. According to Kang 

this tool has gone through the following optimization [zlib06]:

• Full  flushing to  break  data  dependency based on introducing an  extra  field  in  the 

header data of the compressed file 

• Input file partitioning to multiple blocks
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• File read and write threads

These efforts enables the gzip implementation on Cell BE in achieving an overall speedup of 

2.89  for  compression,  as  compared with a  Intel  Pentium4 system.  Other  comparisons  are 

illustrated in the following graph: 

Graph 4. Performance comparison of Cell/B.E. optimized gzip compression with the 

original zlib implementation on other single processor architectures 

Source: Paper HPC-Cell-ParCo2007.pdf [zlib06]

To make it easy to distinguish between the zlib optimization done from Kang and the thesis 

author's further optimization for the hybrid system in the following chapters, Kang's version of 

the zlib library including the optimized gzip utility will be called “Georgia-zlib”. Georgia-zlib 

is further adapted and optimized to fit the requirements and specialty of the hybrid system, 

making a compression offload from System z onto the Cell blade profitable.
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4. Program Analysis

4.1. System environment

The Georgia-zlib library and its gzip code were originally compiled with gcc provided by Cell 

SDK 2.0 and run on a IBM QS20 Cell blade with SPE library libspe. The tool run under 

SDK3.0 on a QS21 as well.

The  System  z  runs  a  Java  client  that  calls  up  the  Cell  blade  server  compression  and 

decompression functions. The server functions are written in C. In the example of Hoplon's 

Taikodom, the client game code is written in Java. The client can also be implemented in any 

programming languages as long as the library supports socket.  

4.2. Modification of Georgia-zlib for Offload

For the purpose of offloading System z's workload onto a Cell blade, the optimized gzip utility 

in the Georgia-zlib package is a helpful basis. Certain points of the utility need to be optimized 

so that the offloading can achieve optimal performance.

4.2.1. Interface and File I/O

The gzip tool of Georgia-zlib offers a command line interface and requires a file name as a 

variable. The tool accesses the data through the standard file i/o functions in C, which, after 

being called, copies the data from the disk to a library buffer. The buffer size is usually set at 

8192 bytes in the Linux operating system, that means, the file data is transferred from the disk 

to the memory in blocks of 8 KB. Accessing the disk creates a high i/o latency. Avoiding this 

would  help  to  increase  the  performance  of  the  Cell/B.E.  server,  therefore  the  following 

optimization to the current gzip utility was carried out:

• The new interface of the calling program receives a memory address and a number as its 
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arguments instead of a file name. The memory address indicates the location of the data 

which needs to be compressed/decompressed; The number specifies the size of the data. 

This  optimization  avoids  the  original  disk  activity  that  is  actually  unnecessary.  As 

System z would send the data to the Cell blade through a standard TCP socket, the Cell 

blade now receives the client data first in its main memory buffers. There is thus no 

need to write the data onto disk only to read it back sometime later. Through a much 

faster data access in the memory, the performance increases. This optimization involves 

changing the program code in the gzip utility, including that running in the SPE. 

• Integrating the gzip function call in the TCP socket program enables calling the program 

directly without using command line. This is a trivial modification which requires a 

simple adaption of the main function name and arguments of Georgia-zlib.   

4.2.2. SPE Thread Adaption

The SPE thread creation model of Georgia-zlib needs to be adapted for this particular hybrid 

system constellation as well. Georgia-zlib is optimized for data being equally distributed to 

each  SPEs  –  the  parallel-pipelined  model  discussed  in  chapter  two.  At  compression  it 

generates SPE threads on all of the available SPEs (or according to user definition) and sends 

each one a same amount of data to be processed. To realize this, the PPE carries out many 

organizational  tasks  including  loading  the  basic  workload,  assigning  vectors  of  data, 

initializing buffer variables and creating SPE threads. These tasks themselves take a lot of 

system resources and create a big overhead for the PPE for utilizing each SPE. After a closer 

look at the situation, it is obvious that the extra workload is actually only useful when the data 

to be processed is very large. By analyzing the realistic data sizes being transferred inside the 

hybrid system (in the Hoplon around 50 KB per stream and less than 100 KB), compressing 

the data that way actually takes longer and creates more costs for the system. Client data in 

this structure more often falls under the 100 KB size limit. For this reason, the data doesn't 

need to be distributed to run on different SPEs – one stream needs only one SPE so that the 

other ones can be reserved for the other streams. At every incoming data stream, the PPE 

creates a new child process to collect the data and then sends it to one free SPE to compute. 
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Graph 5. SPE thread creation

4.2.3. Workflow and Other Modifications

The optimized gzip utility begins its execution with argument parsing. Several issues require 

explanation:

• The compression level from the Cell's server program is set to 6 to achieve an average 

compression and time performance. This number can be set to anything between 1 and 

9. The greater the number is, the higher the compression ratio will be and the more 

time it will cost. This number should not be set by the parsing function of gzip, but 

should be done by the Cell's server program through specifying one more compression 

argument variable. 

• The number of SPU threads that should be generated per input stream is set  to  1 

(represented by '-t1'), indicating the concept of one stream being compressed with one 

SPU. 

• The size of the compression block is set to the maximum block size represented by '-

b9'. The maximum block size is set by the header file minigzip.h with a value of 900 

KB. This size can also be set to 9 MB, allowing the highest input data stream size of 

this value. The current Cell blade QS21 does not support 90 MB due to its memory 

size. 

• If the arguments contain a '-d', the decompression process will be invoked. 

• The other arguments ('-f', '-h', '-r') are deactivated in order to achieve simplicity. They 

lack impact in compressing normal data. Modification could be undertaken in the Cell 

server’s program to reactivate the usage of these flags.
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Depending on the existence of the input argument “-d”, the program sends the data for either 

compression  or  decompression.  When  compressing,   it  firstly  starts  the  header  writing 

procedure  which fills  up the  first  22 bits  with the  header  information that  was  originally 

created for a zipped file. The structure of the header data can be found in the gzip format 

specification (see table two). After defining the memory address pointer and the data size, the 

program then goes on to determine the workload that will later be processed by the SPE. A 

control block for the SPE is created, specifying the location and size of input, output and other 

information.  The  program then  starts  an  SPE thread for  each compression  stream. It  also 

creates a  PPE thread which accumulate  the result  sent from the SPE. The PPE and SPEs 

communicate the processing status using mailboxes. After all blocks are processed, the PPE 

thread has already saved the result data in the right order.  The program then starts a new 

procedure of header writing (as some information was missing when the first procedure took 

place) and substitutes the old header with the new one. The program finishes with a write 

trailer process that writes the CRC information at the end of the data buffer before passing its 

location to the Cell server program.

Decompression  is  similarly  processed  with  header  and trailer  checking instead of  writing 

them. After achieving the compression information from the header, the program lets the data 

be decompressed accordingly and finishes  delivering a result stream that contains only pure 

data. 

 

In  both  folders  spu_compress  and spu_decompress  store  the  SPU codes,  the  parts  of  file 

access are modified to support reading the changed data structure that is sent from the PPE.

4.3. Networking through Sockets

4.3.1. Background Information of Socket Programming

Besides RPC, socket programming is one of the most often used mechanisms to build up 
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networking between different systems as long as both kernel sides offer socket support. It is in 

fact  the  faster  way of  communication,  as it  avoids much system overhead of  middleware 

implementation that would have been necessary for RPC. 

Socket implementation happens on the TCP/IP stack of an operating system. It can usually 

achieve  the  upper  bounds of  bandwidth  and speed that  can  be  achieved between the  two 

communicating systems. The simplest TCP/IP network test can be performed using the ping 

command. By giving the command “ping -c 10 cellhop”, the server named “cellhop” receives 

10 TCP packages (based on standard mode) with one second interval between each package 

and generates the following output:

Table 3. TCP/IP network test

Here “rtt” refers to the Round-trip Time – the time elapsed for the transmission of 64 bytes of 

a TCP packet between the two operating systems. Server cellhop offers an average transfer 

time of half a millisecond, which is also the system latency of TCP. 

Socket programming is not language dependent, and it is not obligatory to have the client and 

the  server  implement  the  same  programming  language.  The  great  flexibility  of  socket 

programming is one main reasons why socket use is so widespread.

4.3.2. Cell/B.E. Server Program

The Cell server program creates a usual AF_INET server socket that enables a  connection to 

it. INET stands for Internet, allowing a TCP/IP connection to the server with an IPv4 Internet 

address  and  a  port  number  reserved  for  that  service.  The  socket  has  the  type  of 

SOCK_STREAM that guarantees error-free arrival of the data stream in the right order. 
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­­­ cellhop.boeblingen.de.ibm.com ping statistics ­­­ 

10 packets transmitted, 10 received, 0% packet loss, time 8992ms 

rtt min/avg/max/mdev = 0.419/0.482/0.598/0.056 ms 
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The program continues with binding the socket with the address (sin_family and sin_port) and 

sets the incoming address (client address) to be INADDR_ANY, allowing connections from 

any client inside the network. This variable should be changed if the Cell server is located in 

an insecure network without firewall protection or other safety mechanisms. In the case of the 

hybrid system, Cell blades situated in the Intranet is protected by layers of firewalls. It can 

thereby trust  any client  that  requests  a connection to  that  port.  After building up the  real 

Gameframe infrastructure, this address is recommended to be configured into the IP-address 

of the System z in order to avoid unwanted connections and dedicate this Cell blade server 

only for compression offload.

The program is able to handle many connections at the same time. It  creates a new child 

process  when  needed  using  fork()  allowing  the  server  to  remain  available  for  other 

requirements as well as processing incoming data. The program sets a BACKLOG number of 

10, which is the highest allowed pending connections value. This number could also be set to 

other integer values including 0. A higher value allows more simultaneous connections but 

could  delay  compression  processing  since  too  many  open  connections  take  much  of  the 

available system resources away. 

At  the  end of  the  execution  process,  the  program reaps  the  dead  process  to  free  system 

resources.  When  a  child  process  terminates,  the  parent  process  is  informed  through  a 

SIGCHLD signal by calling the waitpid() system call. All the resources of the dead process are 

given back to the operating system and the process ID is deleted from the process table.

The data format that the Cell server program receives from System z is specified as follows: 

size of data + argument + data for processing. The size is an integer of four bytes that could 

represent over 4 billion bytes of incoming data (more than 4 GB). 

The only argument that the System z can send the Cell server is '-d' indicating decompression. 

Other arguments can no longer be specified by the z client. This avoids a too complicated 

interface for the user (the one that calls up Cell compression), and helps to reduce mistakes. A 
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user that has imported the class CellDeflater and CellInflater package in his client program 

can call up deflate(inputbytes) and inflate(inputbytes) functions by only specifying his input 

data with no knowledge of how the server system works.

The result data that the server sends back after finishing its compression or decompression has 

the format: size + result data. The size is also represented by an integer of four bytes as in the 

case of receiving. The result data is sent over to the client through the socket channel. 

 

How the data is represented in the communicating systems deserve attention as well. In the 

hybrid system architecture, both System z and Cell blade implement big-endian structure, thus 

eliminating potential problems. Should the data presentation differ, a conversion between the 

TCP network byte oder and the host byte order might have to take place. Network byte order 

transmits data in big-endian format. 

The server program is ready to run. It calls the modified gzip utility, passing the data and 

variables to it. Gzip processes the input and returns the result to the server in form of a struct 

value of a memory pointer and data size.  

Table 4. Struct return value

The Cell server sends the data to its client program on System z. The Cell's main program 

doesn't quit. The child process that handles each connection is reaped at exit.
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typedef struct _result_t{ 
unsigned int size; 
char* buf; 

} result_t;
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Table 5. Reaping dead process

4.4. CellDeflater and CellInflater for Java Client

Clients of all programming languages can talk with the Cell server. In fact, the offload does 

not  have  to  be  restricted  to  System  z  –  other  platforms  can  also  profit  from  Cell's 

functionalities.  As  the  game software  is  written  in  Java,  a  Java  interface  of  compression 

offload on the Cell blade server is provided in the source code. 

Java programmers that wish to take the advantage of the offload mechanism of the Cell blade 

server should import the Java class CellDeflater and CellInflater of his thesis. CellDeflater is 

equipped with the function deflate(inputbytes) that calls up the compression of the Cell blade. 

CellInflater likewise inflate(inputbytes) that brings the decompression function to running. In 

the example program, the Java client sends the byte data for compression and receives the 

compressed data from the server. 
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void sigchld_handler(int s) 
{ 

while(waitpid(­1, NULL, WNOHANG) > 0); 
}

int main(){
struct sigaction sa;
sa.sa_handler = sigchld_handler; 
sigemptyset(&sa.sa_mask); 
sa.sa_flags = SA_RESTART; 
if (sigaction(SIGCHLD, &sa, NULL) == ­1) { 

perror("sigaction error"); 
exit(1); 

}

if (!fork()) {
...
}

}
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Table 6. Java client

The deflate function initializes a socket connection to the Cell blade server, sends over the 

working bytes and receives the result bytes before returning them to the user program. 

 

Table 7. Deflate class sending data

Bytes received are processed in a similar way.  The received size should be checked to see if it 

equals the number specified beforehand. When not, the function recv(1) needs to be called to 

run in a loop.
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BufferedOutputStream writer = new 
BufferedOutputStream(Socket.getOutputStream());

DataOutputStream out = new DataOutputStream(writer);
out.writeInt(inputSize);
out.writeInt(mode);
out.write(input,0,inputSize);

byte[] compressedByte;
byte[] decompressedByte;
CellDeflater def = new CellDeflater();
compressedByte = def.deflate(inputByte);
CellInflater inf = new CellInflater();
decompressedByte = inf.inflate(compressedByte);
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5. Efficiency Evaluation

5.1. Compression with Java.util.zip

The most obvious compression tool for a java programmer is the java.util.zip package. By 

importing this package the programmer can use the convenient compression classes and their 

comfortable  functions.  An  example:  the  Deflater  class  offers  a  deflate(1)3 function,  the 

GZIPInputStream that  offers  a  read(3).  The  performance  of  these  classes  is  based on  the 

performance of the Java language. They do not overcome the performance of machine-near 

languages like C. The test was carried out on a z/Linux system that runs on a z/VM operating 

system. It has 20 GB of main memory and utilizes 12 dedicated CPUs. The command “java 

-version” gives the following information:

Table 8. Java version information

The compression and decompression of java.util.zip was based on the following piece of code:

3 The number in the bracket indicates the number of parameters a function has. 
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java version "1.5.0" 
java(TM)   2   Runtime   Environment,   Standard   Edition   (build 
pxz64devifx­20071025 (SR6b)) 
IBM   J9   VM   (build   2.3,   J2RE   1.5.0   IBM   J9   2.3   Linux   s390x­64 
j9vmxz6423­20071007 (JIT enabled) 
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Table 9. java.util.zip compression and decompression

The variable “input” is a string that contains the content of a file that was read from the disk 

into  the  main  memory beforehand.  The  time  used  for  disk  access  for  java.util.zip  is  not 

calculated into the following graph since a programmer can also have his compression data in 

main memory instead of on the disk. If this is not the case, extra time has to be calculated in 

the consumption of java.util.zip. As disk accessing time is composed of Seek Time4, Rational 

Delay5 and Transfer Time6, a good 20 milliseconds could be needed for accessing 50 KB of 

data on the disk.

 

For every compression, 10 identical trials were conducted in order to canculate an average 

value.  The  data  being  compressed  is  normal  English  text7.  The  numbers  form  a  rough 

representation of the working time of java.util.zip. For compressing and decompressing 60 KB 

of data, this original Java package takes about 50 milliseconds (without disk access time) as 

shown:

4  Seek Time is the amount of time needed for the access arm to reach the disk track. It depends on the spindle 
speed of the disk and the numbers between 10 to 20 milliseconds are common[java01].

5  Rotational Delay is the time needed for bringing the disk to a needed rotation speed. 7200 revolutions per minute 
(RPM) has a maximum rotational delay of 8 ms or an average rotational delay of 4ms.

6  Time during which data is actually read and written to the disk.
7  The text is chapters extracted from the Cell BE Programming tutorial.
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Deflater java_def = new Deflater();
java_def.setInput(input.getBytes());
java_def.finish();
java_def.deflate(java_comp);

Inflater java_inf = new Inflater();
java_inf.setInput(java_comp);
java_inf.inflate(java_decomp);
java_inf.end();
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Graph 6. Compression measurements with java.util.zip 

The values, as may be seen, are not always consistent. For an sample data size of 100 KB, the 

compression time was: 63ms, 52ms, 64ms, 50ms, 155ms, 49ms, 154ms, 50ms, 52ms, 49ms, 

55ms,  51ms,  51ms,  48ms.  The  “usual”  measurements  were  around 50ms,  the  two  values 

above 150 milliseconds exceptionally high.  This is caused by the virtual machine that the 

z/Linux operating system is built on. By coordinating a number of operating systems running 

together on one single physical machine, the z/VM has to distribute the resource fairly that the 

compression cycles sometimes have to wait to be rescheduled. If the same code were executed 

on  Linux directly  installed on  a  physical  machine,  the  measurements  would  tend  to  stay 

constant. 

5.2. Compression with Cell/B.E. Server

5.2.1. Compression Time Components

The time required for Cell/B.E. supported compression is split into several components. On 

top  of  the  real  SPU  time  that  the  SPEs  need  for  doing  the  actual  compression  and 

decompression, the PPU uses a certain amount of time to carry out the gzip organizational 

tasks that are needed before the actual compression work can take place in the SPU. This is 
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named gzip time; it includes processing the gzip header and trailer, assigning initial workload, 

creating the SPE thread and the PPE write thread etc. Beyond this gzip time, the Cell blade 

server  is  involved in  other  organizational  tasks  like  creating new processes  for  the  client 

connections,  gathering  client  data  packages,  calling  up  compression  /  decompression  and 

sending results back to the client. This is called the Cell server total time and encompasses the 

entire  time consumption of the Cell  blade server.  The Java client at  the other end of  the 

network  initializes  the  offloading  by  creating  a  new  socket,  new  InputStream  and 

OutputStream objects to call up the compression. This is demonstrated with the light blue 

colored circle. All four circles contribute to the total cost of time.  

Graph 7. Time composition of Cell-supported Compression 

5.2.2. Cell Server Total Time 

The server programs run on the Linux operating system of the Cell blade QS21 with two Cell 

processors and 2 GB of main memory. The graph below shows the time consumption of the 

three smaller circles of Graph 7, with each represented in blue, pink and yellow. The values 

are an average of 10 measurements respectively. 
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Graph 8. Cell Server Total Time

For compressing and decompressing 60 KB of data, the Cell blade only uses 15ms locally, 

which is a good acceleration compared to Java's 50ms. This shows a drastic contrast between 

the performance of  the C language  and Java.  Compressing the same data  using the same 

algorithms, the 35 milliseconds difference is pure overhead caused by the Java language and 

its virtual machine.

5.2.3. Java Client Time

The Java client that calls up the Cell blade's compression was tested on the same System z 

machine of the java.util.zip test.  The systems are connected to each other through gigabit 

Ethernet, which allows a highest data transfer rate of 125MB/s. As shown in the following 

graph, the Java client adds on top a considerable amount of time indicated by the light blue 

colored path.  The  Java  language  again  takes  a  lot  of  system resources  and proves  to  be 

disadvantageous  and  costly.  By  compressing  60  KB  of  data,  it  consumes  an  extra  20 

milliseconds  only  for  creating  the  necessary  data  objects  for  receiving  and  sending.  In 

comparison, the SPE only needs 8 milliseconds net time to do the actual compression work. 
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Graph 9. Java Client Time

An average calculation time with the Java client was from 10 trials. A typical phenomenon 

was that the time for the first compression invocation was always much higher than the rest. 

For 100 KB data again, the results were 299ms, 49ms, 45ms, 45ms, 56ms, 47ms, 56ms, 49ms, 

54ms, 47ms and 54ms. This is mainly caused by Java's relative higher cost at initializing and 

implementing some expensive objects during the first  call,  in this  case objects of Socket, 

DataInputStream and DataOutputStream. On the Cell blade's side, the gzip time, shown in 

pink, showed little divergence between trials – a few milliseconds at the most [mea01]. It is 

thus  strongly  recommended  that  a  Java  client  programmer  consolidate  the  number  of 

compression invocations in one piece of program code in order to avoid unnecessary costly 

object initiation. 

5.3. Comparison and Conclusion

Combining java.util.zip and the Cell blade results in the following. Java.util.zip, represented in 

purple,  demonstrates  a  higher  demand  on  time.  The  Java  client  in  light  blue  proves  it’s 

advantage over the java.util.zip starting at a data size of about 10 KB. Compression offloading 
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from this size on is worthwhile and the extra costs of the Java client are well compensated for.

Graph 10. Java and Java Client Comparison

As long as time is concerned, compression tasks of less than 10 KB data should not conduct 

through the  offload mechanism,  as  it  will  take  longer  for  the  little  amount  of  data  to  be 

compressed on a network based server rather than using Java's local compression.
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6. Outlook

The design of the workload offloading on System z leveraged network-connected Cell/B.E. 

servers proves to be a successful and well-profitable option as illustrated in chapter five. By 

implementing offloading, the CPU cycles of System z are greatly reduced and compression 

time is saved. The actual percentage of CPU cycles saved was not measured in the framework 

of  this  thesis.  This  would  certainly  be  interesting  to  quantify  and  be  worthy  of  further 

experimentation . 

The data transfer of the test environment is based on a one gigabit Ethernet connection. The 

Infiniband communication system allows an even higher transfer rate  and would raise  the 

performance of the offload design even more. The improvement from Infiniband is currently 

being measured by another thesis student. 

As discovered during testing, the client program implemented in Java isn't very efficient and 

has  hindered  achieving  better  performance.  This  raises  the  inherent  question  of  the 

performance of other programming languages in the same context. This would indeed be an 

interesting comparison in future experiments.
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A.4Abbreviations and Definitions

Cell/B.E. Cell Broadband Engine

CP Central Processor, the general purpose processor 
of the System z

DMZ Demilitarized Zone, a subnetwork staying 
between the untrusted network (usually Internet) 
and LAN.

EIB Element Interconnect Bus

JVM Java Virtual Maschine

GNU GPL GNU General Public License, a widely used free 
software license

IDL Interface Definition Language, a language that 
specifies the interface of a service component. It is 
widely used in RPC, CORBA, etc. 

IFL Integrated Facility for Linux, this is a System z 
processor dedicated for running Linux operating 
system. 

LAN Local Area Network

LZ1 Lempel-Ziv 1, also called LZ77

LZ2 Lempel-Ziv 2, also called LZ78 

MIC Memory Interface Controller

PPE Power Processing Element

PPU Power Processing Unit

RMI Remote Method Invocation

RPC Remote Procedure Call

RPM Rotations per Minute

RTT Round Trip Time,  the  elapsed time for the 
transmission of 64 byte data between a client and 
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a server machine.

SPE Synergistic Processing Element

SPU Synergistic Processing Unit

STI Sony, Toshiba, IBM

z/Linux Also called Linux on System z, is the Linux 
operating system on the IBM System z.

z/OS An operating system on the IBM mainframe.

z/VM System z Virtual Machine operating system 
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