
CICS JVM Server
Application Isolation

Masterarbeit
Lehrstuhl für Technische Informatik

Wilhelm-Schickard-Institut für Informatik
Mathematisch-Naturwissenschaftliche Fakultät

Universität Tübingen

Dipl.-Ing. (FH) Robert Harbach

Betreuer:

Prof. Dr.-Ing. Wilhelm G. Spruth

Tag der Anmeldung: 1. Oktober 2011
Tag der Abgabe: 30. März 2012

Executive Summary

The Java Virtual Machine (JVM) is able to host multiple simultaneously execut-
ing transaction programs. Since a JVM is not capable to provide full application
isolation however, the common practice found in most Java application servers
implies to run one JVM per program. Due to the fact, that this implies an
overhead of computational resources, several, most often proprietary, solutions
for application isolation in JVMs have been proposed in the past.

This paper outlines isolation properties of a new Java Virtual Machine (JVM)
type, called a JVM Server, which implements the OSGi framework, and is in-
tegrated into the System z architecture Customer Control Information System
(CICS). It is shown that this approach resolves two application isolation issues:
The CICS environment enables transaction safe execution of tasks. In addition,
inclusion of the OSGi Framework provides namespace isolation based on class
loading.

However, several issues remain unsolved. They arise from the use of Java system
classes, OSGi specific functions, resource exhaustion, and the use of the Java
Native Interface (JNI).

This paper proposes solutions to these isolation exposures. Some employ func-
tions of the OSGi security layer. Others utilise existing CICS services for pro-
gram control which would have to be implemented differently on other Java
Transaction Servers.

1

Erklärung

Hiermit bestätige ich, dass ich diese Masterarbeit selbstständig und nur mit
Hilfe der angegebenen Quellen und Hilfsmittel verfasst habe. Die vorliegende
Arbeit ist in gleicher oder ähnlicher Form noch in keinem anderen Prüfungsver-
fahren eingereicht worden.

Tübingen, den 30. März 2012

Robert Harbach

2

Acknowledgments

First of all I would like to thank my mother Galina and my sister Anna for sup-
porting me incredibly during my entire study period and my father Alexander
for doing the same as long as he was able to.

At second I would like to thank Professor Spruth for supervising this project and
moreover, for his constant encouragement. In addition, I would like to thank
Dr. Walter Lange for helping me enormously during my Master studies as well
as Prof. Roland Kiefer, Prof. Dr. Johannes Maucher and Prof. Walter Kriha
from the Stuttgart Media University (HdM) for being an inspiration not only
from a technical point of view right from the beginning of my studies.

My gratitude goes also to the specialists from IBM; especially to Uwe Den-
neler, Ulrich Seelbach, Philipp Breitbach, Wilfried Van Hecke, Tobias Leicher
and Isabel Arnold because of their outstanding help regarding all technical top-
ics.

Last but not least I would like to thank Daniel Glück and Robert Hasselaar for
reviewing this document as well as all remaining classmates I had the chance to
work and spend time with during my studies.

3

Contents

1 Introduction 6
1.1 Overview . 6
1.2 Problem Definition . 6
1.3 Solution Approaches . 7
1.4 Document Structure . 8

2 Technologies Used 9
2.1 Properties of the Java Programming Language 9

2.1.1 The Java Runtime Environment 9
2.1.2 Threads in Java . 11
2.1.3 Java’s Platform Security 17

2.2 OSGi . 21
2.2.1 OGSi Framework Architecture Overview 23

2.3 Previous Java integration in CICS 24
2.3.1 Introduction to CICS . 24
2.3.2 CICS JVM support . 28
2.3.3 CICS Open Transaction Environment 30

2.4 JVM Server . 31
2.4.1 Overview . 31
2.4.2 JVM Server and OTE . 31
2.4.3 Threads . 32
2.4.4 OSGi in JVM Servers . 32
2.4.5 Subsystem Interaction . 33

3 Application Isolation Properties of JVM Servers 34
3.1 Overview and Related Work . 34
3.2 Testing Procedure . 34
3.3 Closed Issues . 35

3.3.1 C1: Multitasking with Single Class Loaders 35
3.3.2 C2: Concurrent Access to Shared Resources 36

3.4 Open Issues . 36
3.4.1 I1: System Classes . 36
3.4.2 I2: Overlapping Namespaces 38
3.4.3 I3: The Java Native Interface 41
3.4.4 I4: Resource Exhaustion 44
3.4.5 I5: Issues with Activator Classes 50
3.4.6 I6: Illegal Control . 51

4

4 Approaches to Solving Open Issues 53
4.1 Static Program Analysis . 53

4.1.1 Identifying the Access to Static Fields 53
4.1.2 Identifying Infinite Loops 54

4.2 Java and OSGi Security . 55
4.2.1 Customizing the Java Security Manager 56
4.2.2 Using OSGi Security . 57

4.3 Monitoring . 63
4.4 CICS Services for Program Control 64
4.5 Extensions of the OSGi Framework 65

4.5.1 I-JVM . 65
4.5.2 Hardened OSGi Implementation 66
4.5.3 Sandboxed OSGi . 66
4.5.4 OSGi RFC-0138 Multiple Frameworks In One JVM . . . 66
4.5.5 Applicability to CICS . 67

5 Summary and Conclusion 68
5.1 Key Result . 68
5.2 Summary of Solutions . 68
5.3 Outlook . 69

A Source Code 70
A.1 I1: System Classes . 70

A.1.1 Changes to Static Fields of System Classes 70
A.1.2 CICS Region Shutdown Using System.exit 71
A.1.3 CICS Region Shutdown Using Runtime.halt 71
A.1.4 Execution of OS Commands Using Runtime.exec 72
A.1.5 Stopping Active Transactions Using the Thread Class . . 73

A.2 I2: Overlapping Namespaces . 74
A.2.1 Class loading in wired bundles 74
A.2.2 Threaded Access of a Shared Object (Data Race) 76

A.3 I3: JNI . 78
A.3.1 Segmentation Fault Caused via JNI 78
A.3.2 Modification of private Fields via JNI 79

A.4 I4: Resource Exhaustion . 81
A.4.1 Infinite Loop . 81
A.4.2 Recursive Thread Creation 81
A.4.3 Infinite Service Registration 82
A.4.4 Memory Leak . 83

A.5 I5: Issues with Activator Classes 84
A.5.1 Infinite Loop in the Activator 84
A.5.2 Hanging Thread in the Activator 84

A.6 I6: Illegal Control . 85
A.6.1 OSGi Bundle Context . 85
A.6.2 OGSi Bundle Fragments 86

B Compact Disc (CD) Contents 88

5

Chapter 1

Introduction

1.1 Overview
Enterprises and governmental organizations nowadays implement complex In-
formation Technology (IT) infrastructures. In large enterprises these infrastruc-
tures often contain thousands of servers such as firewall, web, application and
business intelligence servers. The servers are responsible for miscellaneous tasks
as securing networks and applications, routing and switching as well as hosting
(web-)applications. Despite the variety of tasks, however, in almost all large
enterprises the data required for the servers is stored and managed centrally
by one or more Mainframe Computers, that are usually based on the z/OS
operating system. Due to the crucial dependence of enterprises on their data
inventory and resulting security considerations, these Mainframes are usually
placed in different locations. Moreover, applications that access the enterprise
data inventory in most cases include transactional characteristics. In general, an
application represents a transaction if it follows ACID (Atomicity, Consistency,
Isolation, Durability) properties [GR93, ch. 1].

In many cases transactions are “enterprise critical” applications. We define these
as applications, whose incorrect execution leads to intolerable consequences. An
example is the faulty rounding of the last decimal in a floating number of a fi-
nancial transaction. In that particular case, the impact of the error needs to
be identified and corrected, which might require manual interaction for days.
Therefore, in most cases the transactions are controlled by a middleware, re-
ferred to as a transaction monitor or transaction server. The most widespread
transaction servers used in enterprise IT infrastructures are Tuxedo (BEA, to-
day Oracle), CICS (IBM), MTS (Microsoft) and SAP R/3. Due to the growing
popularity of the Java programming language also several Java specific transac-
tion servers have been introduced within the last 12 years. Some examples are
Weblogic (BEA), WebSphere (IBM) and NetWeaver (SAP).

1.2 Problem Definition
A transactional application usually consists of two parts: the business logic and
the presentation logic. While the business logic carries out the actual func-

6

tionality of an application, the presentation logic is responsible for displaying
particular results in a somewhat user-friendly manner on the monitor. Hence, in
the Model-View-Controller (MVC) design pattern, the business logic represents
the Model and the presentation logic the View [HKS04, ch. 9.2.3].

Since the introduction of the Java programming language in 1995, a certain
interest regarding the application of Java for enterprise purposes is present. For
this aim an extension of the Java programming language, the Java Enterprise
Edition (JEE), has been introduced in 1999. Although Java has been widely
adopted thereupon for the implementation of the presentation logic, its appli-
cation for the business logic in enterprise critical software is still not common.

This arises from several reasons. One are certainly the performance issues, that
result from features as the garbage collection and from the fact that Java appli-
cations require the Java Virtual Machine (JVM), that serves as a middleware
layer between applications and the operating system, for their execution. Since,
however, enterprise environments usually include the necessary computational
resources for compensating such issues, performance drops do not represent a
criterion for exclusion for the implementation of enterprise critical software in
Java. The most important reason for the moderate advance of Java for enter-
prise purposes represents its insufficient implementation of isolation (the I in
ACID) properties, that are commonly known already since introduction of the
JEE standard. Czajkowski and Daynés for instance state:

“The existing application isolation mechanisms, such as class loaders,
do not guarantee that two arbitrary applications executing in the
same instance of the JVM will not interfere with one another. Such
interference can occur in many places. For instance, mutable parts
of classes can leak object references and can allow one application to
prevent the others from invoking certain methods. The internalized
strings introduce shared, easy to capture monitors. Sharing event
and finalization queues and their associated handling threads can
block or hinder the execution of some application. Monopolizing of
computational resources, such as heap memory, by one application
can starve the others.” [CD01, ch. 1].

While Sandén outlines that

“Java gives the virtuoso thread programmer considerable freedom,
but it also presents many pitfalls for less experienced programmers
who can create complex programs that fail in baffling ways.”[San04]

1.3 Solution Approaches
In order to resolve the isolation problem in Java, several approaches have been
introduced. Most of these, however, have been discard.

The general problem related to application isolation in JVMs arises from miss-
ing functionalities of the VM such as absent resource management. This im-
plies, that the JVM is not designed for hosting multiple applications in parallel.

7

Therefore, the most common approaches found in application servers requires
to run each application within a separate JVM. This however, leads to an over-
head of computational resources needed, especially in terms of JVM creation
maintenance and destruction. Hence, several approaches towards enabling a
multi application environment in a single JVM have been carried out in pre-
vious researches. A significant approach for solving most isolation issues, was
found to be the Application Isolation API [Jav06], that has been implemented
into the Multi-Tasking Virtual Machine [CD01]. This approach, however, has
never been implemented into any official Java Standard Edition (SE) or EE re-
leases. Another interesting approach was represented by the Persistent Reusable
Virtual Machine (PRVM) [IBM01] provided for CICS, that included a mecha-
nism for resetting the state of the JVM prior to certain program executions
and therefore, could have been used by multiple applications in serial. This
implied a tradeoff between economic resource usage and application isolation.
The PRVM however, has been replaced by a technology called the JVM Servers,
that is an OSGi based JVM, where several applications, in form of bundles, are
running in parallel.

This paper verifies several existing issues related to application isolation in
JVMs and outlines solution approaches. Since some of these approaches are
based on features provided by the middleware, that is hosting the JVM, not
all approaches are applicable to environments other than the one used within
scope of our investigations. Our analysis is based on a JVM version that is im-
plemented into the JVM Server and is available since 2011 for the CICS version
4.2.

The Customer Control Information System (CICS), represents a transaction
monitor with application hosting capabilities. The most important reasons for
using CICS as an application server are, besides its popularity and its widespread
usage, its various services, that among others enable transaction safe execution
of tasks. Moreover, CICS serves as a middleware layer and therefore enables
to use several programs regardless the programming language used for their
creation together, that implies advanced inter application communication.

1.4 Document Structure
The remaining chapters of this paper are organized as follows. Chapter 2 shows
an overview of the technologies used along with their properties, that are im-
portant within the scope of investigations carried out in chapter 3. In addition,
an introduction of JVM integration in CICS including a architectural overview
and a detailed introduction to a recently introduced technology referred to as
JVM Servers are provided.
Chapter 3 includes a detailed discussion of closed and open issues related to
application isolation in JVMs
Chapter 4 outlines approaches to solving open issues mostly by using built-in
functionalities provided for the JVM or the CICS environment. A conclusion
and a summary of solutions for open issues are provided in chapter 5.
The Appendix shows the source code used to exploit open issues and lists the
content of compact disc (CD) attached to the hard copy of this document.

8

Chapter 2

Technologies Used

This chapter introduces the major technologies that are important within the
scope of this paper. Moreover, a detailed introduction including an architectural
overview of JVM Servers is provided.

2.1 Properties of the Java Programming Language
Java is an interpreted, object oriented programming language introduced in
1995, “and was [originally] designed for use in embedded consumer-electronic
applications” [GJSB05, Preface]. Due to the many characteristics beneficial for
developers and users, Java rapidly emerged as one of the most popular pro-
gramming languages. Java’s major characteristics related to the investigations
discussed in chapter 3 are introduced briefly in the following. For a detailed
introduction to Java refer to [GJSB05], [LY99] and [GM96].

2.1.1 The Java Runtime Environment
One of Java’s most renowned characteristics is represented by the Java Virtual
Machine (JVM). It defines an interface between applications, containing the
program code, the Java API, containing the libraries, and the operating system.
Together with all system classes, libraries and the JVM, this interface is called
the Java Runtime Environment (JRE).
This section outlines the basic responsibilities as well as the basics of the storage
management of the JRE that were found to be important for the investigations
that were carried out in chapter 3.

Responsibilities of the JRE

Apart from acting as a middleware layer, the JRE is responsible for all tasks
related to application execution. A non exclusive list of these tasks is presented
below.

• Compilation & Interpretation: Management of the compilation of
classes, including class loading & linking [LY99] of required classes and
control of the interpretation process, since Java programs are are compiled
into java bytecode and interpreted on demand (refer figure 2.1).

9

• Garbage collection: Initialization of the garbage collection thread for
the removal of unused objects and references.

• Memory: Management of all memory parts such as the heap and the
stack.

• Security: Management of most security features, some of which are dis-
cussed in chapter 2.1.3.

• Thread management

• Exception handling

Figure 2.1: Java application execution. Modified after [Eck11, ch. 1.3].

Memory Management

As described in [LY99, ch. 3.5], the JRE memory is divided into six “runtime
data areas”:

• Java Virtual Machine Stack, that “holds local variables and partial results,
and plays a part in method invocation and return”. [LY99, ch. 3.5.2].

• The Heap, that represents the “runtime data area from which memory for
all class instances and arrays is allocated”. [LY99, ch. 3.5.3].

• The PC (program counter) Register, that “contains the address of the Java
virtual machine instruction currently being executed”. [LY99, ch. 3.5.1].

• The Runtime Constant Pool, that “contains several kinds of constants,
ranging from numeric literals known at compile time to method and field
references that must be resolved at run time”. [LY99, ch. 3.5.5].

• The Method Area, that “stores per-class structures such as the runtime
constant pool, field and method data, and the code for methods and con-
structors, including the special methods [...] used in class and instance
initialization and interface type initialization.” [LY99, ch. 3.5.4].

• The Native Method Area, that “colloquially called "C stacks," to sup-
port native methods, methods written in a language other than the Java
programming language”. [LY99, ch. 3.5.6].

10

Lindholm et. al. [LY99, ch. 3.5] also mention that while the heap and the
method area are “shared among all Java virtual machine threads”, the pc regis-
ter and the JVM stacks are created for each thread.

Note that although the above mentioned data areas are defined by the JVM
specification, actual implementations of the JVM may define different data ar-
eas. Within the scope of this paper, however, only the stacks, the heap and the
method area, which are contained within IBM’s JVM implementation, play an
important role.

Since Java applications always remain under the control of the JRE, they im-
ply high security and portability. Due to the on demand interpretation of code
however, Java applications are known for their performance issues. Moreover,
the JVM implies isolation issues if it runs multiple applications at the same time
(refer chapter 3).

2.1.2 Threads in Java
Like most other programming languages Java provides the explicit creation of
user threads, which is achieved by using the Thread API. Threads in general,
are a concept of operating systems that enable parallel processing on multi
processor systems and quasi parallel processing on single processor systems by
dividing a process into several units, known as threads, that can be dispatched
by a scheduler. Since the JVM includes a hardware architecture, it intends to
serve as a operating system to Java applications. Therefore, the JVM includes
the thread concept as well.
An important property of threads that belong to the same process is their shar-
ing of the same address space and the same storage within the memory [Tan03,
ch. 2] (refer figure 2.2). Since all threads active within a JVM belong to the
same process, the JVM process, they are sharing the heap and the method area
(refer chapter 2.1.1).
Note that even without the explicit creation of threads, Java applications in-
clude at least one thread initialized by the main method [OW99, ch. 1].

Silberschatz [Sil05, ch. 4.2] describes that there are three different multithread-
ing models differentiated by their mapping of user threads to kernel threads:

• The many-to-one model: maps all user threads to exactly one kernel
thread enabling high efficiency but also disabling multiprocessing [Sil05,
ch. 4.2.1]

• The one-to-one model: maps each user thread to a different kernel
thread, enabling real multiprocessing but also implying an administra-
tional overhead for the creation of kernel threads resulting in performance
drops [Sil05, ch. 4.2.2]

• The many-to-many model: can be described as a combination of the
previously mentioned models. According to [Sil05, ch. 4.2.3] “the many-
to-many model multiplexes many user-level threads to a smaller or equal
number of kernel threads” and hence, represents a tradeoff in terms of

11

performance and multiprocessing between the many-to-one and the one-
to-one models

Figure 2.2: Multithreading in Java. Source: [OW99, ch. 1.2.2].

Silberschatz [Sil05, ch. 4.3] further describes that there are three libraries serv-
ing as an interface for kernel thread creation: the pthread library, used by UNIX
operating systems, the win32 thread library, used by Microsoft Windows op-
erating systems and the Java Thread API used for explicit creation of threads
within Java applications. Note that the mapping model of Java threads is based
on the operating system the JVM is running on [Sil05, ch. 4.3]. As discussed in
chapter 2.4.3, in JVM Servers Java threads are managed quite uniquely com-
pared to most other operating systems due to the reason that a JVM Server
is running on top of Unix System Services (USS), even within a CICS environ-
ment (which includes a standard USS). Therefore, the pthread library is used
for thread mapping of threads created by an application, while the main thread
of an application is mapped to a CICS T8 TCB (refer chapter 2.4.2).

Java’s Memory Model

“The memory model for a multithreaded system species how memory
actions (e.g., reads and writes) in a program will appear to execute to
the programmer, and specically, which value each read of a memory
location may return.” [MPAM99, ch. 1, p. 1]

Hence, the groundwork for all synchronization actions is the memory model
implemented in Java since version 5.0 that according to [HP07, ch. 1, p. 2] “has
been designed with two goals in mind: (i) as many compiler optimisations as
possible should be allowed, and (ii) the average programmer should not have
to understand all the intricacies of the model”. The memory model is based on
two concepts, the happens-before order and causality, both of which are
explained briefly in the following. For a more detailed explanation and formal
definition of the memory model used by Java a reference is made to [GJSB05,
ch. 17.3], [HP07] and to [MPAM99].

12

Thread 1 Thread 2

1: r2 = A 3: r1 = B
2: B = 1 4: A = 2

(a) Before reordering

Thread 1 Thread 2

B = 1 r1 = B
r2 = A A = 2

(b) After reordering

Table 2.1: Statement reordering example where the assignment r2 = 2 and
r1 = 1 is a possible result. Source: [GJSB05, ch. 17.3]

The happens-before order. The general problem that appears when using
threads are so called data races that are found in “programs that are not
correctly synchronised” [HP07, ch. 2, p. 3], implying “counterintuitive results”
[GJSB05, ch. 17.3]. As stated in [GJSB05, ch. 17.3], “compilers are allowed to
reorder the instructions in either thread” for optimization purposes. Hence, the
actions shown in table 2.1 can result in the (unexpected) variable assignment
r2 = 2 and r1 = 1 after reordering.
In order to solve this problem, Java implements the happens-before concept
that enables defining an order in which actions, reads/writes or locks/unlocks,
are executed. As described in [HP07, ch. 2, p. 4], the happens-before order
represents a “transitive closer of the union of the po [the program order] and the
sw [the synchronized-with] orders”, where the po defines the order of executions
within a thread and the sw order defines the order of executions of different
threads accessing the same resource [HP07, ch. 2, p. 4], [MPAM99, ch. 2.1, p.
3]. In a simplified way, a transitive closure defines the reachability of objects in
binary relations. This can be explained within the context of thread concurrency
as the propagation of synchronization: if one resource access is synchronized, all
subsequent accesses of the same resource are synchronized as well [MPAM99,
ch. 2, p. 3]. An simple example may clarify matters: consider a set of binary
relations R = {(v, w), (x, y)}. In this case the transitive closure T contains
the relation (v, y) (hence: T = {(v, y)}). Now consider that the elements v
and w represent actions within a thread T1 on the variable foo, while x and y
represent actions within thread T2 on the same variable. Then each relation itself
represents the po (program order) and the order between the two threads T1

and T2 the sw (synchronized-with) order. Hence, the relation (v, y) represents
the happens-before order, implying that action v is synchronized with action y
on variable foo. A formal definition of transitive closers is provided by [Cuy07,
ch. 1.5, p. 10].
Note that for using the happens-before concept, one needs to make explicit use
of synchronization techniques offered by Java.

Causality. As described in [GJSB05, ch. 17.4.8], the happens-before order
is “necessary [...] but not sufficient” since it allows “out of thin air” variable
assignment arising from “speculative reasoning” [HP07, ch. 2, p. 5]. Considering
the example shown in table 2.2, that “is correctly synchronised, because in every
sequentially consistent execution none of the guarded writes is executed” [HP07,
ch. 2, p. 5] and that aims the assignment r1 == r2 == 0 and y == x == 42.
Now “imagine that a compiler speculates that one of the writes could happen,
if afterwards can justify it to happen it could optimise the program to make it

13

Initial: x == y == 0

Thread 1 Thread 2

r1 = x r2 = y
if (r1 ̸= 0): if (r2 ̸= 0):
y = 42 x = 42

Table 2.2: Out of the air variable assignment, where r1 == r2 == 42 is a
possible result even with applied happens-before order. Adapted from [GJSB05,
ch. 17.4.8].

happen always” [HP07, ch. 2, p. 5]. Hence, the speculation, that is actually
used for optimization purposes, can lead to the unexpected variable assignment
r1 == r2 == 42. This problem is called causality, due to the fact that the
problem implies “no "first cause" for the actions” [GJSB05, ch. 17.4.8].
The solution of causality includes what is called “causality requirements”
[GJSB05, ch. 17.4.8] defining a procedure where for each action a justified
execution should be found [HP07, ch. 2, p. 5] in order for the action to be
accepted for the actual execution. Hence, in a simplified way one can describe
the procedure as a precautionary measure for justifying certain executions.
Due to its degree of complexity, a formal explanation of these requirements is
out of the scope of this introductory section. It is therefore referred to [HP07,
ch. 2.1] for a detailed explanation of the causality requirements.
Note that the solution for causality is implemented within the memory model
and is used implicitly, implying that causality requirements carried out by the
JVM without the need of additional instructions.

Problems with the Java Memory Model. The Java Memory Model spec-
ification [GJSB05, ch. 17.4] has been proven to allow incorrect compiler reorder-
ing. Aspinall and Sevcik define what they refer to as eight “ugly executions”
in [AS07] resulting from statement reordering that imply “surprising behavior”.
Most of these problems however appear only in unsynchronized program state-
ments. The only issue arising from a synchronized statement appears in context
of “roach motel semantics”. A reordering action where an unsychronized state-
ment is moved to a synchronized block. Aspinall and Sevcik proved in [AS07,
ch. 5], that this action can result in a different outcome of the synchronized
block compared to its original version. Although this represents a major issue,
the justification of the execution is of theoretical nature and has yet not been
proved practically. Moreover Sevcik states in [Sev08, ch. 5.5, p. 115] that “Suns
implementation of Java might be in fact correct [...] and it is only the JMM [the
Java Memory Model] specification that needs fixing”. Therefore, it is advised to
use Java’s synchronization techniques for all concurrent access. An overview of
the most basic techniques are mentioned in the following section.

Practical Thread Synchronization in Java

Prior to outline actual synchronization methods it is important to mention a
definition of thread-safety - a term used intensively in context with CICS appli-
cations. Within a CICS environment thread-safety is defined

14

“as a collection of application programs that employ an agreed-upon
form of serialized access to shared application resources. A program
written to threadsafe standards, then, is a program that implements
the agreed-upon serialization techniques.” [RAB+10, ch. 1.2.6, p.
6]

A similar definition of thread-safety is provided for Java applications. According
to [GPB+06, ch. 2]

“a class is thread-safe if it behaves correctly when accessed from
multiple threads, regardless of the scheduling or interleaving of the
execution of those threads by the runtime environment, and with no
additional synchronization or other coordination on the part of the
calling code.”

Hence, thread-safety does not address specific synchronization methods of ap-
plications but their proper execution instead. This leads to the fact, that an
application may not need to implement synchronization at all in order to be
considered thread-safe. In most applications however, one needs to make use
of specific synchronization methods. Java provides several options for synchro-
nization, most of which are based on the memory model. The very basic ones
are mentioned in the following.

Note that although thread-safety seems similar to application isolation, both
topics differ due to the fact that thread-safety is specifically concerned with
the correct synchronization of resource access within applications and applica-
tion isolation is concerned with the actual restriction of undesired application
communication and interaction.

Monitors and Locks.

“The Java programming language provides multiple mechanisms for
communicating between threads. The most basic of these methods is
synchronization, which is implemented using monitors. Each object
in Java is associated with a monitor, which a thread can lock or
unlock. Only one thread at a time may hold a lock on a monitor.
Any other threads attempting to lock that monitor are blocked until
they can obtain a lock on that monitor. A thread t may lock a
particular monitor multiple times; each unlock reverses the effect of
one lock operation.” [GJSB05, ch. 17.1]

The simplest way of creating monitors and their corresponding locks can be
achieved via the synchronized keyword, that can be applied to methods as
well as to blocks. For method synchronization synchronized is used as a mod-
ifier shown in listing 2.1.
For synchronizing a particular set of instructions or resources without locking a
complete method, synchronized is used as a block statement shown in listing
2.2.

As previously mentioned “each object in Java is associated with a monitor”
[GJSB05, ch. 17.1]. A thread therefore locks a complete object while accessing
a particular synchronized block or method. Roetters states in [Roe01], that

15

sychron i zed (t h i s) {
// code
}

Listing 2.1: Usage of synchronized as a modifier

pub l i c void sychron i zed myMethod () {
// code
}

Listing 2.2: Usage of synchronized as a block statement

“if an object has multiple resources, it’s unnecessary to lock all threads out of
the whole object in order to have one thread use only a subset of the thread’s
resources. Because every object has a lock, we can use dummy objects as simple
locks”, which he refers to as “fine-grain locks” shown in listing 2.3.

c l a s s myClass{

Object x lock=new Object () ;
Object y lock=new Object () ;

pub l i c void do () {

synchron ized (x lock) {
// code
}
synchron ized (y lock) {
// code
}

}
}

Listing 2.3: Usage of fine-grain locks. Adapted from [Roe01].

Apart from the above mentioned ways of creating monitored sections within
an application, Oaks and Wong describe two other options. Explicit locking
by using the Lock interface provided since Java version 5 [OW99, ch. 3.4] and
nested locks used in special cases to avoid deadlocks for instance [OW99, ch.
3.7].

The volantile Modifier. According to [OW99, ch. 3.2] in Java “threads are
allowed to hold the values of variables in local memory (e.g., in a machine regis-
ter)”. This leads to the fact that changes carried out by a thread to a particular
variable may not be visible to other threads accessing the same variable. Al-
though synchronizing the variable using the synchronized keyword can solve
this issue, “the simple task of acquiring and releasing a lock adds more work for
the processor and slows execution” [Hyd99, ch. 7]. Therefore, using monitors
extensively will result in performance issues of applications. In order to enable

16

synchronization with respect to performance one can make use of the volantile
modifier.

“The volatile keyword is used as a modifier on member variables to
force individual threads to reread the variable’s value from shared
memory every time the variable is accessed. In addition, individual
threads are forced to write changes back to shared memory as soon
as they occur. This way, two different threads always see the same
value for a member variable at any particular time.” [Hyd99, ch. 7]

Note that volantile variables should be used with care. As described in
[GPB+06, ch. 3.4.1], volantile variables can guarantee visibility but not atom-
icity. Hence, volantile variables cannot be used for synchronizing simple in-
crements for instance, because an increment represents a “read-modify-write
operation” [GPB+06, ch. 2.2].

Advanced synchronization methods. In contrast to the simple synchro-
nization methods mentioned above, Oaks an Wong describe in [OW99, ch. 6.2]
some advanced methods, such as locks with counters and barriers. The locks
with counters, also referred to as semaphores, enable to lock a resources by mul-
tiple threads at the same time [OW99, ch. 6.2.1]. Barriers, on the other hand,
that represent a central point of synchronization for all threads of a particular
resource [OW99, ch. 6.3.2]. Moreover, Oaks and Wong describe in a detailed
fashion some interesting approaches for the prevention of deadlocks in [OW99,
ch. 6.3]. Since these advanced techniques are not subject to the practical in-
vestigations carried out in chapter 3, a detailed explanation is not provided
here.

2.1.3 Java’s Platform Security
Some basic security concepts implemented in Java since Version 2 are discussed
below.
Security at application level generally aims to prevent malicious functioning of
applications, covering a huge number of security concepts. Apparently, impor-
tant concepts need to be implemented already within the programming language
in order to create what is referred to as “well-behaving” applications. Due to
Java’s portability characteristic, it strictly implements many of these. Java’s
built-in security therefore includes several features, some of which are imple-
mented within the language itself, leading to the fact, that developers are often
not aware of using them. We address these “hidden” security features as implicit
security. Other features are optional and have to be used intentionally, implying
that developers have to take notice of these features and often invest effort into
their configuration. We refer to these features as “explicit” security. The follow-
ing sections aim to give an overview of the major implicit and explicit security
features of the Java programming language and its runtime environment. Since
most features are connected to each other, their interaction is shown in figure
2.3.

17

Language security

Language security features usually “force” developers to follow certain rules de-
fined by the language. The following paragraphs mention some major properties
implemented for security purposes. There are other language security proper-
ties, such as array bound checks explained in [Oak98, ch. 2], not mentioned
below. A complete list is provided in [GJSB05].

Access level modifiers. Protection of objects, methods and variables from
each other is provided by what is referred to as access level modifiers. “Within
a Java program, every entity–that is, every object reference and every primitive
data element–has an access level associated with it “[Oak98, ch. 2]. The several
modifiers implemented in Java are: public, package, private and protected.
Using these modifiers one can restrict the access, also called the visibility, of
particular objects, methods or variables to certain objects based on their phys-
ical location. Classes that have been declared as private, for instance, are
not accessible to other classes, while package classes are visible for all classes
within the same package. Note that this mechanism represents a major security
feature and aid in object isolation, although the modifiers cannot be used for
full isolation of applications. The reason is obvious e.g.: although declaring all
classes in an application as protected will lead to fully isolated objects, it will
also lead to a permanent interruption in inter object communication.

Type safety. Java implements strict restrictions for object conversion. As
described in [Oak98, ch. 2] “Java does not allow arbitrary casting between
objects; an object can only be cast to one of its superclasses or its subclasses”.
This implies that objects are not able to masquerade themselves as other objects,
for violating access restrictions for instance.

Storage protection. “One of the Java compilers primary lines of defense
is its memory allocation and reference model ”[GM96, ch. 6.1]. Gosling et.
al. [GM96, ch. 6.1] state that memory layout is administered by the JVM
enabling what they refer to as “very late binding”; a safety measure ensuring
that “programmers cant infer the physical memory layout of a class by looking
at its declaration”. Another major security advantage mentioned by [GM96,
ch. 6.1] are the absence of pointers known from C++, that enable universal
access of memory storage within the heap and can be used to exploit malicious
behavior.
Next to the methods described above, Java’s garbage collector also contributes
a major part to memory storage security by ensuring type safety due to the
removal of unused object references [Mue05, ch. 3, p. 11].

Bytecode Verification

Based on the assumption that every code can be malicious, the bytecode of
non-Java API classes is tested by the Bytecode Verifier. “The tests range from
simple verication that the format of a code fragment is correct, to passing each
code fragment through a simple theorem prover to establish that it plays by the
rules:

18

• it doesn’t forge pointers,

• it doesn’t violate access restrictions,

• it accesses objects as what they are (for example, InputStream objects
are always used as InputStreams and never as anything else) “[GM96, ch.
6.3].

McGraw and Felden [MF99, ch. 2.6] state, that after the verification process, a
class guarantees that the following attributes are included:

• the class file has the correct format

• stacks will not be overflowed or underflowed

• byte code instructions all have parameters of the correct type

• no illegal data conversions (casts) occur

• private, public, protected, and default accesses are legal

• all register accesses and stores are valid.

Bytecode verification therefore is a major implicit security feature, that enables
the identification of malicious software behavior prior to its execution. The
bytecode itself however, is not tested for detailed access control due to the access
restriction verifications carried out by the theorem prover aim to identify access
with respect to access level modifiers [Ler01] instead of objects or resources.
Note that this particular functionality is provided by the Access Controller.

Class loading and resulting namespaces

A very important security attribute of Java is provided as a side effect by the
class loading mechanism.

According to [Tra01]

“a Java program, unlike one written in C or C++, isn’t a single
executable file, but instead is composed of many individual class
files, each of which corresponds to a single Java class. Additionally,
these class files are not loaded into memory all at once, but rather
are loaded on demand, as needed by the program. The ClassLoader
is the part of the JVM that loads classes into memory.”

McGraw states in [MF99, ch. 2.7] that “there are two basic varieties of class
loaders: Primordial Class Loaders and Class Loader objects. There is only one
Primordial Class Loader, which is an essential part of each Java VM. It cannot
be overridden. The Primordial Class Loader is involved in bootstrapping the
Java environment.” As mentioned in [Mue05, ch. 3, p. 14], classes in Java
are loaded either by using the new operator or by referencing static fields and
methods such as the system’s default print stream System.out. In each case
however, the JVM uses an instance of the class java.lang.ClassLoader, that
implements a class resolution algorithm [Gon03, ch. 5.6] for finding particular
classes. In detail, “class loading proceeds according to the following general
algorithm:

19

• Determine whether the class has been loaded before. If so, return the
previously loaded class.

• Consult the Primordial Class Loader to attempt to load the class from the
CLASSPATH. This prevents external classes from spoofing trusted Java
classes.

• See whether the Class Loader is allowed to create the class being loaded.
The Security Manager makes this decision. If not, throw a security excep-
tion.

• Read the class file into an array of bytes. The way this happens differs
according to particular class loaders. Some class loaders may load classes
from a local database. Others may load classes across the network.

• Construct a Class object and its methods from the class file.

• Resolve classes immediately referenced by the class before it is used. These
classes include classes used by static initializers of the class and any classes
that the class extends.

• Check the class file with the Verifier. ” [MF99, ch. 2.7]

In order to differentiate classes and objects, each class loader instance defines
its own namespace, that represents a group of objects accessible by each other.
Hence, the class loader security side effect is represented by these namespaces
due to their property of “hiding” their objects from other namespaces. There-
fore, one can explicitly use different instances of the ClassLoader for isolation
of objects active within the same runtime environment. Note that, “there is
nothing to stop namespaces from overlapping” [MF99, ch. 2.7], which can arise
from reference sharing, for instance. A problem that will be discussed more
detailed in chapter 3.4.2.

Access Controller

A more suitable approach to access control, compared to access level modifiers,
is provided by the stack inspection mechanism, implemented in the
java.security.AccessController class [MF99, ch. 3.6]. As described in
[MF99, ch. 3.6], the JVM examines the stack during the runtime and, based
on the generalized algorithm explained in [WF98], verifies if particular calls are
legit. For this aim, the AccessController class provides a hand full of methods
for permission checking and temporary access granting [Oak98, ch. 5.5]. The
verifications are based on predefined permissions, also called privileges, that can
be granted within a policy file for multiple classes, also referred to as a protec-
tion domain. According to [Gon03, ch. 3] there are 16 different permissions
supported by the Access Controller.

Security Manager

Similar to the Access Controller, the Security Manager represents a dynamic
mechanism for controlling the access of certain resources. It defines a more
general approach, since it implements various customizable methods enabling

20

what is referred to as fine-grained access control [Gon03, ch. 1.2]. “To un-
derstand the relationship between SecurityManager and AccessController, it is
sufficient to note that SecurityManager represents the concept of a central point
of access control, while AccessController implements a particular access control
algorithm” [Gon03, ch. 6.2]. This implies that permission checks by default are
deferred to the Access Controller and are not carried out by the Security Man-
ager itself [Oak98, ch. 6]. Another important fact is “that the core Java API
never calls the access controller unless a security manager is in place” [Oak98,
ch. 5]. The Access Controller and the Security Manager therefore do not sup-
plement, but complement each another.
According to [MF99, ch. 2.8], “the Security Manager has the following duties:

• Prevent installation of new class loaders [...] .

• Protect threads and thread groups from each other. [...]

• Control the execution of other application programs.

• Control the ability to shut down the VM.

• Control access to other application processes.

• Control access to system resources such as print queues, clipboards, event
queues, system properties, and windows.

• Control file system operations such as read, write, and delete. Access to
local files is strictly controlled.

• Control network socket operations such as connect and accept.

• Control access to Java packages (or groups of classes), including access to
security enforcement classes.”

Each duty represents a number of methods, that can be customized following
the desired behavior. By default these methods implement simple permission
checks. The permissions are defined within a policy file, that represents a white
list, implying that by default no permissions are granted. Therefore, in order
to allow access to particular methods of system classes one needs to grant a
permission explicitly within the policy file once a Security Manager is installed.
To grant the access to the stop method of the Thread class for instance one
needs to add the following lines to the policy file

grant {

java.lang.RuntimePermission "stopThread";

}

Altering the Security Manager will be discussed more detailed in chapter 4.2.1.
Note that the Security Manager is an optional feature and hence, has to be used
explicitly.

2.2 OSGi
Since JVM Servers include an implementation of the OSGi framework, its basic
concepts and advantages are discussed briefly within this section.

21

Figure 2.3: Java security features interaction. Source: [Oak98, ch. 1.3]

The OSGi (Open Services Gateway initiative) Alliance, is a consor-
tium of major technology companies aiming to “create open specifications that
enable the modular assembly of software built with Java technology” [OSG11a].
The need for these standardized specifications arises from the increasing com-
plexity of software products that require high costs for development and ad-
ministrational tasks. As stated in [OSG11a] the major problem is that “today,
software development largely consists of adapting existing functionality to per-
form in a new environment”. As pointed out in [OSG11a], combining Java’s
portability characteristic with “standardized primitives that allow applications
to be constructed from small, reusable and collaborative components” is a sig-
nificant approach towards solving this problem. OSGi specifications cover a
number of services and an application framework enabling modular application
development.

The OSGi framework. The basic idea behind the framework covers the en-
capsulation of programs, functions or software components into modules, called
bundles, that are controlled by the framework. A bundle is a commonly known
JAR file that, as outlined in [OSG11b, ch. 3, p. 25], contains “the resources
necessary to provide some functionality”, “a manifest file describing the contents
of the JAR file” and an “optional documentation”. The manifest file should not
be mistaken for a deployment descriptor used in Java EE applications due to
the fact that it carries in “information about itself” [OSG11b, ch. 3.2.1], while a
deployment descriptor is “used to communicate the needs of application compo-
nents to the Deployer” [CS09, ch. 2.12.4, p 24.]. The bundles can be installed,
updated, started or stopped without restarting the JVM. Apart from this ma-
jor advantage, the modules are separated from each other and are only able
to share resources using predefined interfaces. The following section provides a
more detailed explanation.
Note that within the scope of this paper bundles are interpreted as actual Java
applications (refer chapter 3.2).

22

OSGi framework implementations. The framework specifications have
been implemented into several commercial and open source frameworks such
as Concierge1, Equinox2, Klopferfish3 and Apache Felix4 (refer [OSG11a] for
more information). Most of these open source implementations have been suc-
cessfully implemented in production environments. The Equinox framework for
instance, is implemented in the Eclipse Integrated Development Environment5
as well as in CICS JVM Servers (refer chapter 2.4).

2.2.1 OGSi Framework Architecture Overview
The framework is divided into several layers (refer figure 2.4), which are briefly
explained in the following. Note that the execution environment is represented
by the Java Virtual Machine and is therefore not mentioned below.

Figure 2.4: OSGi framework layered architecture. Source [OSG11b, ch. 1, p. 2]

The module layer provides the general modularization functionality, that
enables to keep modules separated. Tavares and Valente [TV08, ch. 2, p. 2]
state that “each bundle is assigned to a different class loader, thus creating
a particular address space for resources and classes packaged in bundles”. A
property, that will be investigated within the scope of chapter 3.

The life-cycle layer enables the feature of continuously using the JVM with-
out the need for restarts for software updates. It therefore enables advanced
versioning of software components by providing methods for life-cycle control
such as install/uninstall and start/stop. The OSGi framework specification de-
fines six different bundle states described in [OSG11b, ch. 4, p. 81] and shown
in figure 2.5. Note that the lazy activation shown in figure 2.5 is a policy in-
dicating “that the bundle, once started, must not be activated until it receives
the first request to load a class” [OSG11b].

The service layer offers an efficient and secure way of information exchange
between bundles via services. According to [OSG11a], “the reason we needed the
service model is because Java shows how hard it is to write collaborative model

1http://concierge.sourceforge.net/
2http://equinoxosgi.org/
3http://www.knopflerfish.org/
4http://felix.apache.org/site/index.html
5http://www.eclipse.org/

23

Figure 2.5: OSGi framework life-cycle layer bundle states. Source [OSG11b, ch.
4, p. 82]

with only class sharing”. As described in [RAR07, ch. 3.2, p. 4] ”in the OSGi
model, any Java class can be published as a service to be used by other bundles in
the system”. The service layer includes a service registry that monitors services.
This implies that one or more bundles can register their service in the registry
while other bundles can look up for offered services within the registry and use
them for their specific purpose.

The security layer “is an optional layer” and “is based on the Java 2 security
architecture” [OSG11b, ch. 2, p. 11]. It includes permission, digital signing and
certificate related functionalities. Using these functionalities one can allow a
bundle to manage others, or restrict the usage of certain interfaces to particular
bundles.

2.3 Previous Java integration in CICS
Since the introduction of the Java programming language, intense efforts have
been invested into integrate Java within CICS. The following sections aim to
give an overview of CICS and the development of Java integration in CICS as
well as technologies related to the integration.

2.3.1 Introduction to CICS
The Customer Control Information System (CICS) is a proprietary transac-
tion processing system introduced by IBM in 1969 [Gar09] for z/OS systems.
Evolved from the emerging need for “systems that could process data in real
time from terminals connected to the computers” [IBM04b], which are referred
to as “online systems”, during the 1970s’, CICS became one of the most used
transaction processing system worldwide, handling more than 30 billion trans-
actions per day [IBM04a]. As described in [Hor00, ch. 1, p. 1], “hardly a day
goes by when something that you do has not involved a CICS application some-
where in the world - whether it is a trip to the supermarket, taking money from
your bank account [...] or personnel records - CICS is involved”. The reasons
for its popularity are among others its robustness and its “superior perfomance

24

characteristics” [Spr10, p. 28].
Although CICS is nowadays available for most operating systems, including
Linux and Microsoft Windows, it is still primarily used on z/OS. Therefore, the
following paragraphs have a clear focus on introducing major CICS character-
istics for z/OS systems.

Storage protection keys in CICS. Similar to TSO (Time Sharing Option)
and USS (Unix System Services), CICS runs as a subsystem of z/OS on top of
the kernel. Therefore, CICS has an own virtual address space, which is par-
tially mapped to the central storage, also called the memory, and the auxiliary
storage, such as external hard drives. In order to prevent unauthorized access
to the storage blocks, z/OS implements a unique mechanism that includes the
assignment of each storage block to a protection key representing the kernel, a
subsystem or any user. According to [IBM10b, ch. 1, p. 12],

“when a request is made to modify the contents of a central storage
location, the key associated with the request is compared to the
storage protect key. If the keys match or the program is executing in
key 0, the request is satisfied. If the key associated with the request
does not match the storage key, the system rejects the request and
issues a program exception interruption.”

Therefore, prior to each access of a particular storage block, the kernel’s stor-
age manager verifies if the access is legit. This feature leads to highly isolated
storage blocks implying prevention of buffer overflow attacks.
The protection key 0 is assigned to the kernel with universal access to all storage
blocks, keys 1 − 7 are assigned to z/OS related subsystems and keys 8 − 15 are
assigned to user access.
Note that the protection keys are not bound to specific users and do not repre-
sent user ids but the access type instead. Therefore, as described in [IBM10b,
ch. 1, p. 12] “most users - those whose programs run in a virtual region - can
use the same storage protect key” while “these users are called V [V = virtual
users] and are assigned a key of 8”.

CICS manages its own virtual address space by implementing a middleware,
called the CICS Nucleus, that can be described as a mini kernel including task,
storage, terminal, file and program management components (refer figure 2.6).
As a result, users of CICS can either be interpreted as virtual users and assigned
to protection key 8 or as regular users and assigned to protection key 9. Using
key 9 by a particular program within CICS will restrict the access of that pro-
gram to CICS’ storage blocks to read only [IBM11b, ch. 45, p. 575], and can
therefore be interpreted as a feature.

Transactions. As described in [IBM11d, ch. 3, p. 26], a CICS transaction is
known for both, the commonly used meaning of a transaction, defining a unit of
recovery or a unit of work (UOW) with ACID characteristics as well as “all other
transactions of the same type” (refer figure 2.7) combined to a group of com-
ponents. The group includes at least one program, representing the business
logic, a mapset, representing the output interface for applications using 3270
protocol and a unique transaction id. This implies that all operations carried

25

Figure 2.6: Simplified CICS architecture. Modified after [Spr08].

out from each program defined within a particular CICS group strictly follow
all ACID characteristics. Thus, CICS is “acting as an "application server" to
user applications” [IBM04a] and one might “find it helpful to think of CICS as
an operating system within your own operating system” [IBM91, ch. 1] offering
various services for programs.
Transaction processing in CICS is initiated by calling the transaction id of a par-

Figure 2.7: CICS transaction including several units of work. Source: [IBM05,
ch. 5, p. 46]

ticular transaction. Thereupon CICS takes over control and starts a task, also
called a “dispatchable unit of work” [IBM10b, ch. 1, p. 23], which is represented
by a task control block (TCB) and responsible for the transaction processing
(refer figure 2.8). The TCB has a function somewhat similar to the Process
Control Block (PCB) in Unix and other operating system kernels sharing the
same life cycle as shown in figure 2.9. It is used to enable multiprocessing and
is maintained by the CICS task manager.

26

Figure 2.8: CICS transaction execution process. Source: [IBM05, ch. 5, p. 46]

Figure 2.9: CICS transaction task life cycle. Modified after [Spr08]

Application development for CICS. As previously indicated, programs
defined within a transaction are under full control by CICS, which enables the
possibility of accessing a broad variety of services provided by CICS. Examples
of such services are

• unit of work services representing ACID properties of transactions

• data management services for operating system specific data sets

• communications services such as remote function calls.

According to [Bat08, p. 14] “this allows developers to focus on solving business
problems rather than implementing system functions” leading to the fact that
application development can be performed faster and carried out programs are
more reliable.
In general, CICS programs do not need to follow specific patterns due to access-
ing CICS services is achieved using the CICS API, supported for the program-
ming languages C/C++, COBOL, PL/1 and Assembler, by calling the ’EXEC
CICS ...’ statement. These statements are translated by a pre-compiler, the
CICS translator, into language specific instructions for CICS service calls. Java

27

programs, however, do not need to be pre-compiled for accessing CICS services,
due to the JCICS library provided by CICS, which implements common Java
library-like functions.

2.3.2 CICS JVM support
General Java support for CICS, including JCICS, was introduced in 1998 with
the release of the CICS Transaction Server version 1.3 [IBM11e]. Within this
release however, Java programs were not run within a Java Virtual Machine but
were compiled into C code, that itself was compiled into S/390 machine code
using the High Performance Java (HPJ) product [RBC+09, ch. 2, p. 18]. With
the implementation of real JVM support in CICS version 2.1, HPJ became un-
necessary for running Java applications within CICS.

Java Virtual Machines in CICS. Since the introduction of real JVM sup-
port in CICS, JVMs run within the Language Environment (LE). This is a
common runtime environment for several programming languages and can be
described as a collection of resources, libraries and operating system specific
services and interfaces [IBM10a, ch. 1, p. 3]. One of the reasons for running
the JVMs within the LE, is the feature of accessing services not provided by the
CICS-API, such as operating system services (similar to USS). Another reason
for using the LE are the enclaves provided by the LE, which enable isolation of
programs running within the same address space. This enables the feature of
running multiple JVMs within the same CICS region. Unlike other programs
running in CICS, JVMs imply a specific workload management. As outlined in
[IBM11d, ch. 1, p. 10], the JVM runs within “z/OS as a UNIX process” and
“therefore uses MVS Language Environment services rather than CICS Lan-
guage Environment services”. This Unix process includes the LE enclave. From
the LE point of view the JVM and the programs using the JVM are interpreted
as a thread within the enclave. The heap allocation therefore is carried out by
the LE. The storage however, remains under the control of CICS, and the entire
enclave is therefore interpreted as a task (refer figure 2.10). This implies that
all external operations carried out from a Java program by using CICS services
are thread-safe (refer chapter 2.1.1) .

As mentioned in [RBC+09, ch. 2, p. 20], CICS differs between three different
JVM operations modes categorized by their usage. These modes are briefly
introduced in the following while their graphical differentiation is shown in figure
2.11.

Single Use. In order to ensure full isolation between programs, which might
change the state of the JVM, by updating the time zone for instance, CICS im-
plements a JVM mode that handles only one program during the JVM lifetime,
meaning that after the program execution the JVM is destroyed. Although this
approach results in full isolation of programs, it obviously also implies perfor-
mance issues caused by the processing overhead of JVM creation and destruc-
tion.

28

Figure 2.10: Simplified architecture of JVMs in CICS

Continuous. For a significant performance increase, one can make use of the
continuous JVMs, that are reused sequentially by multiple transactions. They
are however only suitable for programs that do not change the state of a JVM.

Resettable. With CICS release 2.1 a new function for continuous JVMs was
introduced that enabled to reset the state of a JVM into its original state prior
to certain program executions. This operation mode is also called the persis-
tent reusable JVM. According to [IBM01, ch. 5, p. 75] however, there are
certain JVMs that are not resettable; one with an updated static variable for
instance. In that case, CICS destroys the unresettable JVM and creates a new
one. Doubtless, the reset functionality has been a major approach towards the
isolation of Java programs. Due to the fact that the reset functionality and the
creation of new JVMs resulting from unresettable states requires computational
resources as well, the performance increase compared to single use JVMs was
moderate. Moreover, according to [RBC+09, ch. 1, p. 14], resettable JVMs
claim more CPU costs per transaction and a more complex set and tune up
procedure than continuous JVMs. Hence, the resettable JVM mode has been
discarded and is not supported since CICS version 3.2. Another reason for the
discard, was the fact that the resettable JVM’s reset functionality is not part
of the official JVM specification (refer [LY99]). Therefore, it was considered as
a proprietary JVM implementation.

Note that all JVM operation modes mentioned above differ from each other,
although they share a common property: each JVM can handle only one Java
program at any time. Therefore, usually several JVMs are running within sepa-
rate enclaves for Java program execution - also referred to as the JVM pool, that

29

Figure 2.11: JVM operation modes in CICS. Source [RBC+09, ch. 2, p. 20]

is managed by CICS. This property obviously agrees with the characteristic of
many common application servers and results in performance issues. Moreover,
as stated in [Arn11], due to not only the programs but also the JVM consuming
storage space too, only about 20 JVMs fit into a CICS region. In order to solve
these issues, the so-called JVM Servers were introduced in CICS version 4.2
(refer chapter 2.4).

2.3.3 CICS Open Transaction Environment
As previously mentioned each program within CICS is interpreted as a task
with a life-cycle similar to a thread in Unix. Prior to CICS version 1.3 this task
was represented by a Quasi Reentrant (QR) TCB, which could be suspended
by the task manager if and only if the task was accessing the CICS API. This
property implies high isolation of programs accessing CICS services but also
the fact that no concurrent task processing was possible because only one TCB
could be active at any time within each CICS region, with no respect to the
amount of computational resources available. It is because of that reason that
Open Transaction Environment (OTE) was introduced in CICS 1.3. According
to [RAB+10, ch. 1, p. 3], OTE aims to increase throughput, improve perfor-
mance and enable the use of non-CICS APIs. OTE includes several different
TCB modes, called open TCBs, which can coexist and prevent TCB blocking.
This mainly arises from the fact that most APIs accessed by programs within
CICS were rewritten for thread-safe execution.
Since CICS version 2.1 and the introduction of the JVM specific TCB modes J8,
CICS key, and J9, user key, JVMs benefit from OTE too, as these modes enable
the option of running multiple JVMs within the same CICS region. Note that
the QR TCB is still available for the use of non thread-safe APIs and as stated
in [Hac06, p. 4] due to the “heavy CPU exploiting nature of Java applications”,
Java TCBs have been prioritized lower than the QR TCB.
In CICS version 4.2 however, a new TCB for Java related tasks has been intro-
duced, the T8 TCB, which is used only by JVM Servers.

30

2.4 JVM Server

2.4.1 Overview
A new fully reusable continuous JVM mode was introduced in CICS version 4.2
where multiple programs are using the same JVM called a JVM Server (refer
figure 2.12). The pooled JVMs however, are still supported including, both
single use and continuos modes, but “will be removed in a future release of CICS”
[IBM11d, ch. 1, p. 2]. A major benefit of JVM Servers is their implementation
of the open source Equinox OSGi framework including all features of OSGi such
as advanced versioning, modularization and service based communication.
The OSGi framework is not part of the JVM. In a simplified way it represents an
application that itself serves as an application container. Thus, there is no need
of extending the JVM specification. Unlike as the resettable JVM (refer chapter
2.3.2), the JVM Server is not considered as a proprietary JVM implementation.
Note that despite the renewals, a JVM Server implies the same environment as
pooled JVMs including an enclave, LE and USS as shown in figure 2.10.

Figure 2.12: Comparison of the JVM Server and the pooled JVM environment.
Source [BCC+11, p. 3]

2.4.2 JVM Server and OTE
In JVM Servers each application is assigned to the T8 TCB, a new TCB type
exclusively used by JVM Servers. It is running concurrently as a thread with
other programs active within the JVM [IBM11d]. Moreover, as outlined in
[IBM11d, ch.3, p. 29], “not only is the JVM shared by all CICS tasks, which
might be running multiple applications concurrently, all static data and static
classes are also shared”. This arises from the fact that all threads within a JVM
belong to the same process and therefore are using the same address space (refer
chapter 2.1.2).
CICS also allows to run multiple JVM Servers within the same CICS region;
an important feature since as mentioned in [BCC+11, p. 2] “each JVM Server

31

can be configured with a different set of runtime components or even different
sets of middleware components“. According to [IBM11d, ch. 1, p. 5] one JVM
Server can run up to 256 threads, while the maximum amount of T8 threads is
limited to 1024. This implies that “the JVM Server gives CICS the ability to
handle many more Java tasks in one region than ever before” [BCC+11, p. 2].

2.4.3 Threads
JVM Servers imply a quite unique thread management compared to UNIX or
Microsoft Windows operating systems. As described in [IBM11d, ch. 3, p. 29]
“CICS tasks run in parallel as threads in the same JVM Server process”. Con-
sidering that the JVM Server runs within a Language Environment on top of
Unix System Services (refer figure 2.10), JVMs consequently use the pthread
library with the many-to-many model for thread execution. Since Java applica-
tions within CICS are represented by CICS tasks, the pthreads accessing CICS
services are mapped to a CICS T8 TCB. As CICS-API calls are full transaction
safe, the major problems in terms of safe concurrent access reside within the
JVM Server environment, that includes several pthreads sharing the same ad-
dress space. Hence, according to [IBM11d, ch. 1, p. 1], Java applications should
be thread-safe in order to be installed on a JVM Server. A detailed discussion
to thread-safety in JVM Server environments is pointed out in chapter 3.
It is important to mention that when creating user threads within Java appli-
cations running in a JVM Server, one has to consider a major fact that needs
additional care: according to [IBM11d, ch. 3, p. 29] “these threads cannot
access CICS services [...] [and] any attempt to access CICS services from an
application-spawned thread results in a Java bm.exception”. Moreover, one
needs to “ensure that they [the application-spawned threads] do not run beyond
the lifetime of the CICS task that runs the application” [IBM11d, ch. 3, p. 29].
Note that except of user created threads all bundles active within a the JVM
Server use the OSGi framework thread.

2.4.4 OSGi in JVM Servers
Although JVM Server implement the Equinox OSGi framework, they imply
unique characteristics compared to the stand-alone Equinox OSGi framework
implementation. At first, OSGi bundles need to be included into a CICS bun-
dle, that represents the actual resource for CICS. Each CICS bundle can include
one or more OSGi bundles. This enables a higher level of bundle grouping and
leads in some cases to an advantage in terms of maintenance and administration
of bundles. At second, CICS bundles can include the CICS-MainClass: state-
ment in the manifest file referencing the main class of the bundle. Therefore,
a CICS JVM Server application does not need to implement an activator class
that according to [OSG11b, ch. 4.2, p. 88] is used to start and stop the bun-
dle. Note that as stated in [Bre11] these Activator classes “do not run on a T8
TCB” but on an application-spawned thread, that implies the previously men-
tioned application-spawned thread properties (refer chapter 2.4.3). The third
important unique characteristic of JVM Server is the bundle administration.
Unlike in stand-alone OSGi frameworks that include an OSGi console for the
administrational tasks such as installment and disablement of bundles, JVM
Servers are exclusively administered by the CICS Explorer (refer to [RBB+10]),

32

that is available as a plug-in for the Eclipse SDK6. There is however, an option
of starting the console described in [Bre11]. It includes adding the parameter
osgi.console=<port> into the JVM Server profile and connecting via Telnet
to the specified port. Although this option represents an interesting alternative
to the CICS Explorer, according to [Bre11] it should only be used for “program
diagnosis”, since administration of bundles from the console “leads to [their]
inconsistent state in CICS”.

2.4.5 Subsystem Interaction
As previously indicated, the entire application development and application
administration for JVM Servers is carried out by using the CICS Explorer. It
offers a user interface for USS access via FTP for the upload of bundles as well
as a CICS management interface for application control. The interaction of the
Local Development Environment, USS and CICS among with the responsibilities
of each system and the application flow is shown in figure 2.13. It includes
the CICS bundle within USS to be used as the resource for the actual bundle
installed on a predefined JVM Server within CICS. The CICS program includes
a reference to the main class of the bundle and a reference to the JVM Server
while the CICS specific transaction, that can be started using a 3270 terminal
emulator for instance, refers to the CICS program.

Figure 2.13: Subsystem interaction

6http://www-01.ibm.com/software/htp/cics/explorer/

33

Chapter 3

Application Isolation
Properties of JVM Servers

3.1 Overview and Related Work
The identification of isolation issues in multiple application JVMs and the de-
velopment of solutions for these issues has been subject to several researches.
Balfanz and Gong [BG97] for instance outlined several issues with multiple ap-
plication JVMs and proposed several extensions to the JVM specification for
isolation purposes. Another significant approach towards application isolation
was found to be the Barcelona Project1, that included several approaches to-
wards application isolation described in [Cza00] and [CD01]. Although most
problems that have been identified in such researches were resolved within the
resettable JVM mode (refer chapter 2.3.2), this mode has been replaced by the
JVM Servers, where multiple applications are using the same JVM in parallel.
Therefore, known application isolation issues were applied to a JVM Server in
order to verify if these still play a major role.

Most isolation issues have been adapted from [Mue05], that outlines several
important issues related to isolation deficits of the JVM and from [PF09], that
outlines several vulnerabilities of OSGi frameworks.

Note that within the scope of this paper application isolation issues are de-
fined as undesired influence to applications carried out within the same JVM.
Therefore, other vulnerabilities of Java or the OSGi framework, such as outlined
in [PF09], for instance, were not considered.

3.2 Testing Procedure
In order to verify if common isolation issues are applicable to JVM Servers
practical tests have been carried out. Since most issues have been adapted from
[Mue05], that describes general Java issues, and from [PF09], that has focus on
OSGi specific issues, these publications serve as a groundwork for the tests. The

1http://labs.oracle.com/projects/barcelona/

34

Software Version

z/OS 1.12
CICS 4.2
CICS Explorer 1.1
Eclipse 3.7.1
Equinox 3.6.1
Java (64 Bit) 6.0.1
Java Health Center 2.0.0

Table 3.1: Software versions used for the verifications.

actual issues applied to JVM Servers and their results are documented within
the following sections. The results are represented in form of

• System Display and Search Facility (SDSF) log files,

• CICS output messages,

• Java specific error messages such as exceptions and

• outputs such as charts and messages provided by the Java Health Center2,
that represents a diagnostic tool for JVM Servers.

All software and the corresponding versions used for the verifications are shown
in table 3.1.
Note that the source code used to reproduce open issues in chapter 3.4 is pro-
vided in appendix A. Also note that for the sake of simplicity and due to the
reason that an OSGi bundle can include an additional CICS-MainClass: state-
ment in the manifest file (refer chapter 2.4), each OSGI bundle is considered as
a Java application in the following.

3.3 Closed Issues

3.3.1 C1: Multitasking with Single Class Loaders
The issue outlined by Mueller in [Mue05, ch. 3.2.5] in context of using single
class loaders, where an application is able to update static variables of other ap-
plications, is resolved in JVM Servers. This is due to the fact, that each bundle
is using its own class loader, that represents one of the techniques proposed in
[BG97] for the solution of isolation issues. Therefore, bundles are not able to
access each other in a JVM Server. Since system classes however, “are not sub-
ject to per-application replication” [Cza00], application isolation using different
class loaders is not complete [Mue05, ch. 3.2.7, p. 16] (refer I1, chapter 3.4.1).
Moreover, isolation can simply be omitted when namespaces overlap (refer I2,
chapter 3.4.2).

2http://www-01.ibm.com/support/docview.wss?uid=swg21413628

35

3.3.2 C2: Concurrent Access to Shared Resources
In a stand alone JVM environment, without CICS, file and database access
shared by multiple applications needs synchronization. Since CICS offers ser-
vices for these tasks (refer [RBC+09, ch. 6]) and since CICS services are thread-
safe, additional synchronization within application code becomes obsolete when
strictly using these services. This however, does not apply to inter application
communication if applications share objects as described in I2, chapter 3.4.2,
for instance.

3.4 Open Issues

3.4.1 I1: System Classes
Static Fields of System Classes

In a OGSi framework each bundle has an own class loader, leading to the fact
that each bundle has an own namespace. This property results in high iso-
lation due to classes from different bundles are not visible to each other. As
described in [Mue05, ch. 3.2.7, p. 16], although using different class loaders
for isolation purposes certainly represents a good approach, isolation remains
incomplete. Czajkowski [Cza00, ch. 1, p. 1], states that “the place where the
isolation breaks [when using different class loaders] is the interaction of appli-
cations through static fields and static synchronized methods of system classes
(they are not subject to per-application replication)”. Hence, by default each
application running within a JVM can change static fields and execute synchro-
nized methods of system classed with no restriction, which could effect other
applications running within the same JVM.
This fact actually represents one of the major reasons for the introduction of
the resettable JVM mode in CICS described in chapter 2.3.2. Since this mode
is replaced by the JVM Server, this section aims to outline the issue that is
related to changes of the state of the JVM within JVM Servers.

Within one practical test, it was verified that the problem of static field and
synchronized method access of system classes is applicable to JVM Servers.
The code used to reproduce the issue is shown in appendix A.1.1, that basi-
cally shows the Access class of bundle B accessing the file.separator system
property which has been changed previously by the Change class of bundle A.
The output produced by both applications is shown in listing 3.1. It indicates
that the change of the system property carried out by the Access class instance
is visible to the Change class instance.

Severe Issues with Methods of System Classes

The fact that all bundles are able to access methods of system classes im-
plies the fact that an application is able to shutdown the JVM by using the
exit(int status) method of the java.lang.System class [PF09, ch. 3.2]. In
JVM Servers however, this call leads to a more crucial issue: the shut down of
the entire CICS region implying that all applications running within the par-
ticular CICS region will be unexpectedly closed. Using the code provided in

36

Sta r t i ng bundle A
Current f i l e s epa ra to r : /
Changing f i l e s epa ra to r to \
Current f i l e s epa ra to r : \

S ta r t i ng bundle B
Current f i l e s epa ra to r : \

Listing 3.1: Output produced by code from appendix A.1.1 indicating that
changes to static fields of system classes are globally visible.

appendix A.1.2 this issue was reproduced. The output message of CICS dis-
played on a 3270 terminal emulator prior to the shutdown is shown in listing
3.2. It indicates that the shutdown was carried out immediately - without addi-
tional need of any user interaction. It is therefore stated in [IBM11d, ch. 3, p.
27] that the System.exit method should not be used since “this method causes
both the JVM Server and CICS to shut down, affecting the state and availability
of your applications”. This results from the fact that CICS cancels the region on
purpose. Since the JVM Server shutdown using the exit(int status) method
of the java.lang.System class is carried out of the scope of CICS and since
it is uncertain what transactions are affected by the unexpected JVM Server
shutdown, CICS cancels the region in order to to assure that a rollback can be
performed. Therefore, this particular action does not represent a bug.
There is however, another option for achieving the same result and beyond de-

DFHTM1703 CICS1 CICS i s being terminated by us e r i d IBMUSER in
t r an sa c t i on STO at netname SC0TCp26 .

Listing 3.2: CICS message prior to an unexpected shutdown of the CICS region
CICS1 caused by the transaction STO.

scribed in [PF09, ch. 3.2.5]: the java.lang.Runtime class, that enables the
execution of native operating system calls. Using the halt() method, for in-
stance, will lead to the same result as above (sourcecode shown in appendix
A.1.3). Moreover, using the exec(String "command") method, one can exe-
cute operating system calls and access the file system for applying changes to
certain resources out of the scope of any synchronization such as synchronized
file services provided by the JCICS library (refer [IBM11d, ch. 3, p. 60]). The
source code of a successfully applied example is shown in appendix A.1.4, where
the bundle deletes a file within the working directory of the USS file system.
This leads to the fact, that it is generally possible to execute the Unix specific
command rm -rf *, that leads to the deletion of all files within the working
directory, i.e. all logs and file resources created by applications active within the
JVM Server. Note that this does not imply a security issue at operating system
level due to the reason, that the JVM Server should have read/write/execute
rights for his own working directory.

Another major issue related to isolation issues in context with system classes
was found in the java.lang.Thread class (refer [Mue05, ch. 3.5]). Since all

37

applications are represented by threads within a JVM Server (refer chapter 2.4)
and since all threads can be accessed using the getAllStackTraces method of
the Thread class, one can stop, suspend or interrupt other applications that
are active within the same JVM Server using the corresponding methods of the
Thread class (refer [Ora11b]). Appendix A.1.5 shows the source code used to
reproduce the issue. Its execution led to a termination of all active transactions
with the AKC3 abend code that according to [IBM11a, p. 131] indicates that
“the task has been purged, probably due to operator action”.

3.4.2 I2: Overlapping Namespaces
Although using different class loaders leads to isolated bundles, one has to be
aware of overlapping namespaces. These omit the security side effect of multiple
class loaders (refer chapter 2.1.3). In the case of OSGi, overlapping namespaces
appear when importing/exporting packages of bundles.

Class Loading and Static Fields

In some cases it is necessary to access objects in between bundles. For this aim
a bundle can export a package which another bundle imports. The resulting
relationship between the bundles is called a wire (refer [OSG11b, ch. 3.5.1, p.
39]). In that case the importer bundle and the exporter bundle namespaces
will overlap. An example modified after [Lip08] may clarify matters: consider
a class XClass of bundle X and a class YClass of bundle Y , both of which are
importing AClass class from bundle A and are accessing a static field of AClass.
Since AClass “is loaded only once [...] ([by] its defining class loader)” [Lip08],
bundle Y ’s instance of AClass will see changes to static fields carried out by
bundle X’s instance of AClass (refer figure 3.1). This results from the resolu-
tion algorithm, that includes the search for classes loaded within the imported
bundles via delegation [OSG11b, ch. 3.5, p. 28].
The mentioned example is similar to the scenario of using single class loaders de-
scribed in [Mue05, ch. 3.2.5] and has been applied to a JVM Server. Appendix
A.2.1 shows the source code used to reproduce this example, where bundle X’s
change to the static string variable myName of AClass is visible to bundle Y
(refer to listing 3.3 for the textual output produced by the application).

Creating wires however, enables another potentially dangerous feature: shar-
ing of objects. The fact that a wire enables the visibility of certain packages,
leads to the fact that an exporter bundle can return a reference of a particular
object to an importer bundle. In that case both bundles are able to access
the same object. Mueller refers to this problem in [Mue05, ch. 3.3, p. 18] as
“deficits in the area of inter process communication”. It implies the absence of
a mechanism to revoke a reference and administrational issues resulting from
uncontrolled reference sharing [Mue05, ch. 3.3, p. 18]. Note that since each
Java application represents a thread-safe CICS task, one does not need to take
care of synchronization at this point. This particular problem however appears
when sharing objects and accessing these by application-spawned threads as
described in the following.

38

Figure 3.1: OSGi classloading is delegated to the exporter class leading to over-
lapping namespaces. Modified after [Lip08].

ins tanc e o f XClass
(XClass) c l a s s l oade r used to load AClass :
org . e c l i p s e . o s g i . i n t e r n a l . baseadaptor . DefaultClassLoader@87e63e0
(XClass) cur r ent va lue o f myName: undef ined
(XClass) changing value o f myName
(XClass) cur r ent va lue o f myName: Smith

ins tanc e o f YClass
(YClass) c l a s s l oade r used to load AClass :
org . e c l i p s e . o s g i . i n t e r n a l . baseadaptor . DefaultClassLoader@87e63e0
(YClass) cur r ent va lue o f myName: Smith
(YClass) changing value o f myName
(YClass) cur r ent va lue o f myName: Doe

Listing 3.3: Output message indicating that changes carried out from bundles
x and y to bundle a’s static variable myName are visible to each other due to
the fact that both bundles are using the same class loader to load AClass.

Threaded access of shared Objects

When accessing shared objects using threads, synchronization problems become
isolation issues. Consider an example with three bundles: ABundle, including
AClass, XBundle including XClass, and YBundle including YClass. In this
example an object of AClass creates an instance of ZClass and shares this
instance with instances from XClass as well as YClass, while XClass and YClass

represent threads, that access and increment a variable from the instance of
ZClass (refer figure 3.2). Now if ZClass does not implement synchronization, a
data race appears. The source code applied to JVM Servers implementing the
example to exploit a data race is shown in appendix A.2.2. The textual output
of the application written into the standard output file is shown in listing 3.4. It
implies a data race because Y object did not see the update of the counter to the
value 7 carried out by X object and hence, Y object resets the counter from 7 to
3. Using synchronized methods or synchronized blocks however, implies another
major problem in context of hanging threads as described in the following.

39

Figure 3.2: Schematic representation of threads from XClass and YClass ac-
cessing the shared instance from ZClass.

(A ob j e c t) S ta r t i ng data race :
(Y ob j e c t) va lue o f counter be f o r e update : 0
(Y ob j e c t) updating value o f counter to : 1
(Y ob j e c t) updated value o f counter : 1
. . .
(Y ob j e c t) va lue o f counter be f o r e update : 7
(X ob j e c t) va lue o f counter be f o r e update : 2
(X ob j e c t) updating value o f counter to : 3
(X ob j e c t) updated value o f counter : 3
. . .

Listing 3.4: Output message of an unsynchronized threaded access of a shared
object indicating a data race.

Hanging Threads in synchronized Methods

Problems with synchronized methods and synchronized blocks appear in context
of hanging threads. As described in chapter 2.1.2, synchronized methods and
synchronized blocks are locked by a thread before the access, while only one
thread can acquire a lock at the same time. Other threads will wait until the
lock is released before entering the synchronized method or the synchronized
block. Now the major issue is a hanging thread that owns a lock. Since the
hanging thread can never release the acquired lock, a deadlock appears that may
lead to a hanging application. A hanging thread can arise from suspending an
active thread, for instance. Although methods that result in a hanging thread
are officially deprecated (refer to [Ora11b]), their execution is not prohibited.
In order to show that this issue is not resolved in JVM Servers, an example of a
suspended thread similar to the example from [Mue05, ch. 4.4] has been applied
to a JVM Server. The basic scenario of this test is identical to the previous
example (refer figure 3.2), where a shared object of ZClass is accessed by two
threads, XClass and YClass, both of which are located in different bundles.
In this example however, ZClass implements synchronization and suspends the
first thread (XClass) that acquires a lock (refer listing 3.5 for source code of

40

the modified ZClass). The result of an execution is a deadlock due to the fact
that the YClass thread remained within blocked state until the JVM Server
has been restarted - no further processing was carried out by the transaction.
Refer figure 3.3, for the graphical interpretation provided by the Java Health
Center Thread view.
Note that hanging threads can lead to the same problem when accessing methods
of system classes because these are synchronized as well (refer [Mue05, ch. 4.4]).
Therefore, the access and update of the file separator system property shown in
I1 (refer chapter 3.4.1) is potentially dangerous if it is carried out by a thread.

package zbundle ;

pub l i c c l a s s ZClass {

p r i va t e i n t counter=0;

pub l i c synchron ized i n t getCounter () {
Thread . currentThread () . suspend () ;
r e turn counter ;

}

pub l i c synchron ized void setCounter (i n t x) {
t h i s . counter = x ;

}
}

Listing 3.5: Modified ZClass causing a deadlock due to suspending a thread
within a synchronized method.

3.4.3 I3: The Java Native Interface
As described in [Mue05, ch. 4, p. 32], in some cases it is desirable to use plat-
form specific code for certain tasks. This is often the case if particular tasks
cannot be implemented within a Java application. For this purpose Java of-
fers the Java Native Interface (JNI) that according to [Ora11a] “is a standard
programming interface for writing Java native methods and embedding the Ja-
vaTM virtual machine into native applications”. Using JNI one can outsource
specific functions into a program written in C for instance, that leads to ad-
vanced inter application communication. According to [She99, ch. 1.2, p. 5],
“the JNI is a powerful feature that allows you to take advantage of the Java
platform, but still utilize code written in other languages ”. This feature how-
ever, comes not without a price. As described by Liang in [She99, ch. 1.3, p. 6]
“while the Java programming language is type-safe and secure, native languages
such as C or C++ are not. As a result, you must use extra care when writing
applications using the JNI”. Moreover, one has to be aware of a major fact.
As stated in [She99, ch. 1.1, p. 4] “native applications and native libraries are
typically dependent on a particular host environment. A C application built for
one operating system, for example, typically does not work on other operating
systems.”

The following tests aim to show that the JNI omits the storage protection

41

(a) Thread-26 (XClass) holding moni-
tor of ZClass

(b) Thread-27 (YClass) waiting for
monitor held by Thread-26 (XClass)

Figure 3.3: Java Health Center Thread Panel view indicating that the XClass
thread holds a monitor of ZClass required by the YClass thread. Since the
XClass thread is suspended, a deadlock occurred.

and access level modifier Java security concepts mentioned in chapter 2.1.3.

Updating private fields out of a C program via JNI. Liang describes in
[She99, ch. 4.1, p. 41] the possibility of accessing and updating private instance
fields of a Java object from a C program via JNI along with a practical example.
This example has been adapted into a JVM Server.

Bundle Alpha imports a package from bundle Beta that contains the BetaClass.
This class defines a private string variable myName and no methods for the ma-
nipulation of this variable. Now, due to the access level modifier security (refer
chapter 2.1.3), bundle Alpha is not able to modify myName. This security feature
however can be omitted by using the JNI since the C Program does not follow
the security rules defined in Java. Figure 3.4 shows a graphical interpretation
of the scenario while the source code of this example is provided in appendix
A.3.2. The output generated by bundle Alpha shows (refer listing 3.6), that the
modification of the private field myName of bundle Beta, contained in BetaClass,
was successful.

Although updating private fields can be interpreted as a feature, in terms of
application isolation it represents a major issue.
Note that the C program Backdoor.c (refer listing A.13 of appendix A.3.2) does
not include any specific code that designates the access to a private field. There-
fore, a private field modification might be carried out unindented.

The functionality of updating private fields is also provided by the Reflection
API. As described in [Ora12] “reflection is commonly used by programs which

42

require the ability to examine or modify the runtime behavior of applications
running in the Java virtual machine.” This implies the fact that, unlike to the
JNI, the main objective of the Reflection API is the modification of classes and
therefore, it is not considered as a cause of potential isolation issues within the
scope of this paper.

Figure 3.4: Modification of private fields enabled trough the use of the JNI.

DELT t ran sa c t i on s t a r t ed
Creat ing new Beta ob j e c t
Or i g i na l p r i va t e s t r i n g value o f Beta ob j e c t : BetaObj
Updating p r i va t e s t r i n g value o f Beta ob j e c t out o f C program via

the JNI
Updated p r i va t e f i e l d va lue o f Beta ob j e c t : foobar

Listing 3.6: Output message of AlphaClass indicating that the modification to
private string value of BetaClass was successful.

Impact of a segmentation fault within the C program. Mueller practi-
cally investigated in [Mue05, ch. 4.7] the impact of a segmentation fault caused
by a C program, that has been called via JNI out of a stand alone JVM. His
result indicates that the JVM unexpectedly shuts down leaving all applications
in an undefined state. This scenario has been reproduced in the JVM Server
environment using the code provided in appendix A.3.1. The result is an issue
as crucial as in a stand alone JVM. Listing 3.7 shows the relevant SDSF log
indicating that the JVM Server has been restarted by CICS after the execution
of the segmentation fault, while the restart was carried out immediately; with
no respect to active transactions. Note that the SDSF log in listing 3.7 does
not provide an abend code, leading to the fact, that it would have been difficult
to determine the cause of the problem if this error would have appeared in a
productive environment.

A similar issue also appears if the C program Backdoor.c (refer listing A.13
of appendix A.3.2) from the previous example regarding the private field up-
date does not include the

#pragma convert("UTF-8")

43

statement, that tells the C compiler to compile the code in UTF-8 format. In
that case the JVM will not be able to interpret the native library and will start
an exhaustive search. CICS will interpret this as an infinite loop and therefore
will terminate the transaction with an AKEC abend code (refer chapter 3.4.4 for
explanation) and moreover, restart the JVM Server.

JVMSERVER DFH$JVMS i s being d i s ab l ed by CICS because i t i s in an
i n c o n s i s t e n t s t a t e .

IBMUSER JVMSERVER DFH$JVMS i s being d i s ab l ed due to a PHASEOUT
reques t .

IBMUSER JVMSERVER DFH$JVMS i s d i s ab l ed .
CICS i s enab l ing JVMSERVER DFH$JVMS a f t e r s u c c e s s f u l l y d i s a b l i n g

the r e s ou r c e .
IBMUSER An attempt to attach to JVMSERVER DFH$JVMS has f a i l e d

because the t r an sa c t i on abended .
Transact ion FSF abend ???? in program DFHTFP term CP06 . Updates to

l o c a l r e c ove r ab l e r e s ou r c e s w i l l be backed out .
START2 JVMSERVER DFH$JVMS i s p ro c e s s i ng any queued OSGi bundles .
START2 JVMSERVER DFH$JVMS i s now enabled and i s ready f o r use .

Listing 3.7: SDSF log indicating a restart after a segmentation fault caused by
a JNI call. No abend code is provided by CICS.

3.4.4 I4: Resource Exhaustion
In JVM Servers all Java applications share the same processing and memory
resources. These applications are not tied to specific restrictions in terms of
resource usage. Each application is therefore allowed to use as many resources
as needed. Hence, applications that are using resources extensively could have
an effect on other applications running within the same JVM. In the worst
case these applications can cause a denial of service, that represents a crucial
isolation issue.
Missing resource management is a common problem and therefore has been
subject to several researches (refer [BD01], [CvE98] and [Yak02]). Since the
OSGi framework does not implement a resource manager, all known problems
are applicable to a JVM with an implemented OSGi framework. Therefore,
Parrend and Frénot [PF09, ch. 3] identified several Java specific vulnerabilities
in an OSGi environment, that result in resource exhaustion and that according
to [GTM+09, ch. 2, p. 5] arise from the “lack of resource accounting”. In detail
these vulnerabilities are:

• Memory Exhaustion

• Stand Alone Infinite Loop

• Exponential Object Creation

• Recursive Thread Creation

• Hanging Threads

Note that hanging threads have been discussed in I2 (refer chapter 3.4.2) and
therefore are not mentioned below. Also note that memory exhaustion, recursive

44

thread and exponential object creation result in the same issue: exceedance of
available memory. Therefore, only the recursive thread creation scenario as an
example for exceedance of available memory modified after [PF09, ch. 3.2.5, p.
484] has been applied to a JVM Server. In addition, another crucial problem
known as memory leaks and an OSGi specific issue similar to exponential object
creation outlined in [PF09, ch. 3.2.8, p. 486], defined as “Numerous Service
Registration”, have been verified within this section as well.

Infinite Loops

Problems with infinite loops in Java have been discussed in [PF09, ch. 3.2.6, p.
484] and in [Mue05, ch. 4.6.2]. The basic issue with loops is that an application
cannot be terminated as long as it is still processing the loop; even if the exit
condition is faulty and will therefore never occur. Parrend and Frénot [PF09,
ch. 3.2.6, p. 484] state that an infinite loop consumes “much of the available
CPU”. Therefore, this certainly represents an issue in a shared environment.
In a JVM Server however, as described in the following, a different issue with
infinite loops appears.

CICS includes a feature to detect infinite loops. Once an infinite loop is iden-
tified, CICS terminates the transaction with the abend code AKEC, that ac-
cording to [IBM11a, ch. 2, p. 133] describes that “the kernel (KE) domain
has detected runaway”. Now, this termination implies, similar to a segmen-
tation fault (refer I3, chapter 3.4.3), an immediate JVM Server restart; with
no respect to active transactions. Therefore, the execution of the code shown
in appendix A.4.1 will lead to the message shown in listing 3.8 and to a JVM
Server restart. Hence, issues resulting from infinite loops are considered as more
severe in a JVM Server compared to a stand alone JVM.
Note that, the detection of infinite loops, is not applicable to activator classes,
due to the fact, that these classes do not run under the control of CICS. There-
fore, infinite loops in Activator classes do not lead to a JVM Server restart (refer
I5, chapter 3.4.5).

Although the detection of infinite loops was found to be accurate, one has to

Transact ion INFL f a i l e d with abend AKEC. Updates to l o c a l
r e c ove rab l e r e s ou r c e s backed out .

Listing 3.8: SDSF output indicating that the transaction containing the infinite
loop has been terminated.

be aware of the fact, that if an infinite loop contains calls to CICS services, the
detection will be omitted. This was identified by adding a println statement
within the infinite loop of the bundle code shown in appendix A.4.1, that dis-
played the current iteration count on the 3270 terminal emulator. In this case
the transaction was not terminated even after millions of iterations. Moreover,
the Java Health Center Method Profile view, that monitors the CPU usage per
method, reported that the infinite loop consumed a high amount of available
CPU resources (refer listing 3.9).

45

The method In f i n i t eLoop . main () i s consuming approximately 22% of
the CPU cy c l e s . I t may be a good candidate f o r opt imiza t i on .

Listing 3.9: Java Health Center Method Profile view diagnostic message
indicating that the infinite loop consumes 24% of the available CPU power.

Recursive Thread Creation

One of the most simple ways of exhausting memory is enabled by recursion.
This requires an object or a thread to create multiple instances of itself recur-
sively. The source code of the recursive thread creation example modified after
[PF09, ch. 3.2.5, p. 484] is shown in appendix A.4.2, where each thread cre-
ates 15 instances of itself recursively, increments a static counter and prints the
counter to the standard output. The execution of the example in a JVM Server
lead to a java.lang.StackOverwflowError exception, indicating that “an ap-
plication recurses too deeply” [Ora11b]. Although the transaction carrying out
the recursive thread creation was terminated, according to the standard output
more than 5900 threads have been created before the exception was thrown.
As shown in the Java Health Center Garbage Collection view in figure 3.5, this
high amount of created threads had an impact on the heap storage, that indi-
cates an increase in heap usage and pause time, representing the time needed
for garbage collection. Moreover, the Java Health Center reported the increase
of the heap usage as shown in listing 3.10 after the execution of the recursive
thread example.

Heap usage seems to be growing over time . I t i n c r ea s ed by 12%
in the l a s t th i rd o f the l og compared to the middle o f the l og

.
The number o f c o l l e c t i o n s a l s o i n c r ea s ed by 2.838% in response
to the in c r ea s ed pr e s su r e on the heap .

Listing 3.10: Java Health Center diagnostic message indicating that the heap
usage is increasing.

Memory Leaks

“Because Java uses automatic garbage collection, many think that
Java programs are free from the possibility of memory leaks. Un-
fortunately, this is not necessarily the case. Although automatic
garbage collection solves the main cause of memory leaks, you can
still have memory leaks in a Java program” [Nyl99].

As explained by Dingle in [Din04, ch. 2], garbage collection in Java is based
on the verification if objects are alive. An alive object basically implies other
objects referencing to it. “When an object has no more references, the object
is a candidate for garbage collection” [GM96, ch. 2.1.6, p. 24]. According to
[Din04, ch. 2, p. 10] “herein lays the problem: a live object can contain, possibly
unwittingly, a reference to a dead object”. Therefore, Java’s garbage collection

46

Figure 3.5: Java Health Center Garbage Collection View chart indicating an
increase in used heap space and paused times due to recursive thread creation.

does not guarantee a program to be free of memory leaks. The effects of a
memory leak is tremendous: an application that includes a memory leak can
consume most of the available storage, which will not be garbage collected even
after the application has finished execution. This implies an even more severe
issue than recursive thread creation.

As mentioned in [Kop11a] and [Kop11b], there are many sources for a mem-
ory leak such as static objects or class loading. A simple code example for a
memory leak adapted from [Fri02, ch. 8] is shown in listing 3.11. The basic
aim of the code is to create 100.000 instances of the MemoryLeak class, each one
containing a character array of 100.000 bytes and each one to be encapsulated
within a List object. Each List object includes a reference to the next List

object and the previous List object and therefore represents a classic Java list.
Due to garbage collection, it is actually not possible to keep all objects alive
in such a list because there are no external references pointing to it. Since,
however, the MemoryLeak class includes the static variable top, that references
the latest List object, each single object is considered to be alive and will not
be removed by the garbage collector. Moreover, since the static variable top is
not tied to a specific MemoryLeak instance, all created objects will be considered
to be alive beyond the life time of the initial MemoryLeak instance.
In order to avoid a java.lang.OutOfMemoryError exception in the practical
verification regarding memory leaks in JVM Servers, the source code shown in
listing 3.11 has been altered to create not more than four MemoryLeak objects,
each one holding a char array of the size of one megabyte (refer appendix A.4.4).
The result of an execution of the source code is shown as a Java Health Cen-
ter Garbage Collection chart in figure 3.6. It indicates that the memory is not
garbage collected and moreover, that the pause time has increased significantly.
In addition, the Java Health Center reported, that the issue might result from

47

// L i s t . java
c l a s s L i s t
{

MemoryLeak mem;
L i s t next ;

}

c l a s s MemoryLeak
{

s t a t i c L i s t top ;

char [] memory = new char [1 0 0 0 0 0] ;

pub l i c s t a t i c void main (S t r ing [] a rgs)
{

f o r (i n t i = 0 ; i < 100000; i++)
{

L i s t temp = new L i s t () ;
temp .mem = new MemoryLeak () ;
temp . next = top ;
top = temp ;

}
}

}

Listing 3.11: geoff]Example of a Memory Leak in Java. Source: [Fri02, ch. 8]

a memory leak as shown in listing 3.12.

Note that executing the transactions, that carries out the memory leak source

Heap usage seems to be growing over time . I t i n c r ea s ed by 14%
. . .
The number o f c o l l e c t i o n s a l s o i n c r ea s ed by 2.006% in response
to the in c r ea s ed pr e s su r e on the heap
. . .
I f you don ’ t know o f a reason why the memory requi rements o f
your app l i c a t i o n should be growing , your app l i c a t i o n may be
l e ak ing memory .

Listing 3.12: Java Health Center diagnostic message indicating that an
application using the heap might leak memory.

code multiple times will lead to a java.lang.OutOfMemoryError and to a JVM
Server restart. This however, is not obvious at first due to the reason that CICS
will terminate the transaction with the message shown in listing 3.13, that does
not provide an abend code. In the standard error output however a message
will be displayed that indicates the OutOfMemoryError as the source of the
problem (refer listing 3.14).

48

Figure 3.6: Java Health Center Garbage Collection view chart indicating an
increase in used heap space and paused times due to recursive thread creation.

CICS1 Transact ion LEAK f a i l e d with abend ?? . Updates to
l o c a l r e cove r ab l e r e s ou r c e s backed out .

Listing 3.13: CICS output message indicating that the memory leak transaction
has been terminated. No abend code is provided.

Infinite Service Registration

As described in [PF09, ch. 3.2.8, p. 486], the “registration of a high number
of (possibly identical) services through a loop [...] [makes] the whole platform
freeze in the Concierge implementation”. This has been proven to be applicable
to the Equinox OSGi implementation in JVM Servers as well. The execution
of the source code shown in appendix A.4.3, that aims to register identical
services within an infinite loop, leads to a hanging JVM Server and therefore,
to a denial of service until the heap storage exceeds the maximum amount and
a java.lang.OutOfMemoryError exception is thrown or until the infinite loop
will be terminated by CICS with an AKEC abend code. The Java Health
Center Garbage Collection view chart shown in figure 3.7, indicates the increase
in consumed memory cause by the enormous amount of service registrations.

. . . Proce s s ing dump event " systhrow " , d e t a i l " java / lang /
OutOfMemoryError" . . .

Listing 3.14: Standard error
output indicating that a java.lang.OutOfMemoryError exception is the cause
of the JVM Server restart.

49

Figure 3.7: Java Health Center Garbage Collection view chart indicating an
increase in used heap space and paused times due to infinite service registration.

3.4.5 I5: Issues with Activator Classes
Parrend and Frénot describe in [PF09, ch. 3.2.3] two issues that can appear
within the bundle activator and that can effect the entire OSGi framework: an
infinite loop and a hanging thread. According to [PF09, ch. 3.2.3, p. 483] an
infinite loop “freezes the process that has launched the starting of the bundle
[the OSGi thread], and consumes most of the available CPU” and a “hanging
thread in the Bundle Activator makes the management utility freeze”.

As indicated in chapter 2.4, Activator classes are not mapped to a CICS TCB
and therefore run as an application-spawned thread [Bre11]. This leads to the
fact, that one cannot use CICS services within Activator classes and moreover,
that infinite loops within an Activator are not detected by CICS.

As stated in [IBM11d, ch. 3, p. 29] “CICS has a timeout that specifies how
long to wait for these classes to complete before continuing to start or stop the
JVM Server”. This timeout however, is not applied for the start/stop procedure
of bundles. Due to this reason infinite loops and hanging threads in activator
classes represent a problem in JVM Servers as well. Moreover, since the CICS
Explorer carries out an installation/deinstallation of a bundle together with its
activation/deactivation, the installation of a bundle will already lead to the
problem with the management utility. With the code shown in appendix A.5 an
infinite loop (refer to appendix A.5.1) and a hanging thread (refer to appendix
A.5.2) in the activator class were applied to a JVM Server. Unlike as outlined in
[PF09, ch. 3.2.3, p. 483], the installation of both bundles led to the same prob-
lem: the freeze of the management utility. Consequently, it was not possible to
communicate with the CICS region using the CICS Management Interface as
long as the activation of the bundle was processed. Although this problem had

50

no effect on other bundles, due to the reason that all bundle were active and all
transactions were accessible through the 3270 terminal emulator, in both cases
a CICS region restart was the only solution for regaining control. Breitbach
[Bre11] even “strongly discourages” using Activator classes in JVM Servers be-
cause they “do not run on a T8 TCB” but on an application-spawned thread
(refer chapter 2.4). Therefore, it is advised that, except of special cases, such
as for security bundles responsible for defining permissions, Activator classes
should not be used in JVM Servers.

Note that if an infinite service registration (refer I4, chapter 3.4.4) is carried
out within an Activator class, resource exhaustion will appear in combination
with a hanging management utility.

3.4.6 I6: Illegal Control
OSGi Bundle Context

The OSGi framework offers several features of managing bundles. This is en-
abled by the BundleContext object of the OSGi framework API. According to
[OSG11b, ch. 4.3, p. 99]

“the relationship between the Framework and its installed bundles
is realized by the use of BundleContext objects. A BundleContext
object represents the execution context of a single bundle within
the OSGi Service Platform, and acts as a proxy to the underlying
Framework. A BundleContext object is created by the Framework
when a bundle is started.”

Moreover, the OSGi Specification states in [OSG11b, ch. 4.3, p. 99], that
the BundleContext can be used among others for “installing new bundles” and
for “interrogating other bundles installed in the OSGi environment”. Therefore,
using the bundle context one can access various information of bundles such
as their install location and moreover, one can start, stop, install and uninstall
bundles using the corresponding methods provided by the BundleContext class
(refer [OSG11b, ch. 9.1.7]).

Although useful, this feature implies an isolation issue since by default there
are no restrictions for illegal control. Parrend and Frénot [PF09, ch. 3.2.7, p
485] refer to this as the “Pirate Bundle Manager” vulnerability, that is defined
as “a bundle that manages others without being requested to do so”.

In general the bundle context is passed to each bundle within the start and
stop methods of the Activator class. Therefore, the most simple way for carry-
ing out illegal control is by applying the particular code within the Activator.
A practical example for illegal control using the bundle context is shown in
appendix A.6.1, where a bundle Alpha aims to stop and uninstall the bun-
dle Beta. Since Activator classes can lead to other issues (refer I5, chapter
3.4.5), the source code shown in appendix A.6.1 implements an option of ac-
cessing the BundleContext without an Activator class, that is enabled by the
FrameworkUtil class of the OSGi framework API (refer [OSG11b, ch. 3.9.9, p.
60]).

51

Figure 3.8: Unintended package export enabled through bundle fragment.

The execution of the code in appendix A.6.1 leads as expected to the unin-
stallation of the bundle Beta. Since this action was not carried out by the CICS
Explorer, the state change of the bundle was not visible within the CICS Ex-
plorer Management Interface. This implies, that bundle control via the bundle
context is out of the scope of the CICS Explorer

OSGi Bundle Fragments

An issue related to illegal control is enabled by the fragment functionality pro-
vided in OSGi frameworks. According to the OSGi specification [OSG11b, ch.
3.14, p. 69] “fragments are bundles that can be attached to one or more host
bundles by the Framework”. They basically represent a method for replacing
particular functionalities of bundles without replacing the entire bundle. “A key
use case for fragments is providing translation files for different locales. This
allows the translation files to be treated and shipped independently from the
main application bundle” [OSG11b, ch. 3.14, p. 69]. The OSGi specification
[OSG11b, ch. 3.14, p. 70] also states that “when a fragment bundle is attached
to a host bundle, it logically becomes part of it. All classes and resources within
the fragment bundle must be loaded using the class loader (or Bunde object)
of its host bundle”. This implies that a fragment can override functions of the
host and since the host bundle is not aware of any fragments attached to it,
this feature can be used for illegal control. In this context Parrend and Frénot
[PF09, ch. 3.2.8, p. 486] describe the following scenario: “A fragment bundle
exports a package from its host that this latter does not intend to make visible.
Other bundles can then execute classes in this package”. Figure 3.8 shows a
graphical interpretation of this issue, where FragmentBundle exports the pack-
age myHiddenPackage of HostBundle, that was not intended to be exported by
HostBundle. Appendix A.6.2 shows an implementation along with the manifest
files of each bundle of this issue. The execution of the application implies, as
expected, that SomeBundle can access MyHiddenClass with no restrictions.

52

Chapter 4

Approaches to Solving Open
Issues

This chapter provides a list of approaches to solutions of open the isolation
issues outlined in chapter 3. Since most issues can be resolved by using built-in
solutions offered in OSGi and by using tools offered for JVM Servers, proprietary
solutions that require the extension of the JVM or the OSGi framework are not
discussed in detail.

4.1 Static Program Analysis
“Static analysis concerns techniques for obtaining information about
the possible states that a program passes through during execu-
tion, without actually running the program on specic inputs. In-
stead, static-analysis techniques explore a programs behavior for
all possible inputs and all possible states that the program can
reach.”[RSW04]

An approach of solving particular issues of the Java programming language was
found to be automatic code analysis using specific tools. Since issues as infinite
loops are common mistakes, most static program analysis utilities are capable
of detecting these in most cases.
This section introduces two utilities, one for the identification of accesses to
static fields and one infinite loops within program code.

4.1.1 Identifying the Access to Static Fields
Since the state of the JVM is represented by static fields, one needs to make
sure that an application active within a JVM Server always resets modifications
to these static fields. IBM offers a utility, the CICS JVM Application Isolation
Utility, that helps to identify if an application is accessing static fields or syn-
chronized static methods of system classes. According to [IBM11c, ch. 28, p.
214] “the CICS JVM Application Isolation Utility is a code analyzer tool, which
inspects Java bytecodes in Java Archive (JAR) files and class files”. The utility

53

is a Java application that is executed out of a USS terminal session. The out-
come of its application to the source code from appendix A.1.1, where bundle A
is changing the file separator system property is shown in listing 4.1. It indicates
that the utility has identified the execution of the methods getProperty and
setProperty.

Since the identification by the application isolation utility regarding the ac-

C i c s I s oU t i l : CICS JVM Appl i ca t ion I s o l a t i o n U t i l i t y
Copyright (C) IBM Corp . 2007

Reading j a r f i l e : A_1 . 0 . 0 . j a r

Class : a . Change

Method : pub l i c s t a t i c void main (com . ibm . c i c s . s e r v e r .
CommAreaHolder)

S t a t i c methods invoked by t h i s method :
com . ibm . c i c s . s e r v e r . Task getTask ()
(de f ined in c l a s s : com . ibm . c i c s . s e r v e r . Task)
java . lang . S t r ing getProperty (java . lang . S t r ing)
(de f ined in c l a s s : java . lang . System)
java . lang . S t r ing se tProper ty (java . lang . Str ing , java . lang .

S t r ing)
(de f ined in c l a s s : java . lang . System)

Number o f methods in spec t ed : 2
Total s t a t i c wr i t e s f o r t h i s c l a s s : 0

Number o f c l a s s e s in spec t ed : 2
End o f j a r f i l e : A_1 . 0 . 0 . j a r

Number o f j a r f i l e s i n spec t ed : 1
Number o f c l a s s f i l e s i n spec t ed : 0

Listing 4.1: Output of the CICS Application Isolation Utility applied to the
source code of bundle A, that aims to change a static field of a system class
(refer to appendix A.1.1). The output indicates that the Change.class calls the
getProperty and the setProperty methods of the java.lang.System class.

cess to static fields is not limited to system classes, the utility can be applied
verify static field access of non system classes as well. Listing 4.2, shows the
output of the application isolation utility applied to the source code provided in
appendix A.2.1, where XClass located in bundle X updates a static field from
AClass located in bundle A. It indicates that the update to the static field
in AClass has been identified by the application isolation utility. Therefore,
applying the utility to all bundles prior to their installation into a JVM Server
is mandatory in order to prevent issues resulting from static fields.

4.1.2 Identifying Infinite Loops
As mentioned in I4 (refer chapter 3.4.4), although CICS is able to identify
infinite loops within transactions, the result of an identification leads always to
a JVM Server restart. Therefore, it is more appropriate to carry out particular

54

C i c s I s oU t i l : CICS JVM Appl i ca t ion I s o l a t i o n U t i l i t y

Copyright (C) IBM Corp . 2007

Reading j a r f i l e : overlap_XBundle_3 . 0 . 0 . j a r

Class : X. XClass

Method : pub l i c s t a t i c void main (com . ibm . c i c s . s e r v e r .
CommAreaHolder)

S t a t i c f i e l d s wr i t t en in t h i s method :
java . lang . S t r ing myName
(de f ined in c l a s s : A. AClass)

S t a t i c methods invoked by t h i s method :
com . ibm . c i c s . s e r v e r . Task getTask ()
(de f ined in c l a s s : com . ibm . c i c s . s e r v e r . Task)

Number o f methods in spec t ed : 2
Total s t a t i c wr i t e s f o r t h i s c l a s s : 1

Number o f c l a s s e s in spec t ed : 2
End o f j a r f i l e : overlap_XBundle_3 . 0 . 0 . j a r

Number o f j a r f i l e s i n spec t ed : 1
Number o f c l a s s f i l e s i n spec t ed : 0

Listing 4.2: Output of the CICS Application Isolation Utility applied to the
source code of bundle X, that aims to change a static field of a non system
class (refer appendix A.2.1). The output indicates that the XClass is updating
a static field from AClass.

identifications of infinite loops prior to running an application within a JVM
Server. An interesting approach for the detection of infinite loops and beyond
is represented by the FindBugs1 tool (refer [APM+07]), that includes “nealry
300 different bug patterns” [APM+07, ch. 2, p. 1] for the detection of several
common problems. Moreover, since the utility is provided as a Eclipse Plug-In,
it can be integrated into the CICS Explorer environment.
In order to show that infinite loops can be identified using static code analysis,
the FindBugs utility has been applied to the bundle containing the infinite loop
(refer appendix A.4.1) discussed in I4 (refer chapter 3.4.4). The output provided
in listing 4.3 clearly indicates that the infinite loop has been detected by the
utility.
Note that although static program analysis is reliable in most cases, there is no
guarantee that actual bugs will be detected due to the fact that certain bugs
might vary and therefore could require a new bug pattern for their identification.

4.2 Java and OSGi Security
As discussed in chapter 2.1.3, the Java Security Manager, that includes several
permissions, represents a fine-grained security concept. Therefore the installa-
tion of the Security Manager and its customization for the purpose of resolving

1http://findbugs.sourceforge.net/

55

Bug : There i s an apparent i n f i n i t e loop in i n f l o o p . I n f i n i t eLoop .
main (CommAreaHolder)

This loop doesn ’ t seem to have a way to terminate (other than by
perhaps throwing an except ion) .

Conf idence : High , Rank : Scary (8)
Pattern : IL_INFINITE_LOOP
Type : IL , Category : CORRECTNESS (Correc tnes s)

Listing 4.3: FindBug output of application to the infinite loop bundle shown
in appendix A.4.1.The output indicates that FindBug has identified the infinite
loop.

isolation issues is described in the following. Moreover, the OSGi security layer,
which is a more powerful approach compared to the standard Java Security
Manager, will be discussed in detail within this section.

4.2.1 Customizing the Java Security Manager
As indicated in chapter 2.1.3, the Security Manager represents a Class that in-
cludes a number of customizable methods. By default these methods inlcude
simple permission checks that are implemented within the Access Controller
(refer chapter 2.1.3). Since permissions are defined within a policy file, that
represents a white list, by default no permissions are granted. Therefore, stop-
ping threads (refer I1, chapter 3.4.1) is not allowed by default once a Security
Manager is active. This however does not apply to the System.exit and the
Runtime.halt methods. As stated in [Ora11b], “the "exitVM.*" permission is
automatically granted to all code loaded from the application class path, thus
enabling applications to terminate themselves”. Since the JVM Server is a multi-
application VM, this fact represents a problem. Hence, in order to revoke the
granted permission of exiting the VM, one needs to customize the existing Se-
curity Manager by overwriting the checkExit method of the SecurityManager

class. In addition one needs to create an instance of the customized Security
Manager and install it by executing the method System.setSecurityManager.
Since the Security Manager is installed globally, activating the customized Se-
curity Manager be implemented within a separate bundle.

An example of a customized Security Manager is shown in listing 4.4. Note
that since MySecurityManager extends from the SecurityManager class, all
unimplemented methods are adapted from the default Security Manager.
With the customized Security Manager shown in listing 4.4 active within the
JVM Server, the transactions accessing the source code shown in appendix A.1.2
and appendix A.1.3, that both aim to shutdown the VM, will be aborted with
the abend code AJ05. This indicates according to [IBM11a, p. 127] that “an
unhandled exception has been caught by the Java environment” - in this case
the security exception stating ***Not allowed to stop the VM*** (refer listing
4.4).

Due to the fact that suspending threads can be prevented by the Security Man-

56

ager, the problem of stopping applications discussed in I1 (refer chapter 3.4.1)
is also reduced if a Security Manager is active. Since hanging threads do not
only result from the use of the deprecated suspend method but also from other
issues such as unexpected shutdowns of (sub)systems or faulty thread imple-
mentations as shown in [Blo05, ch. 9, Puzzles 77 and 85], the issues resulting
from hanging threads can not be resolved completely with built-in solutions.
However, due to the fact that the Java Health Center provides a Thread tiew,
it can be used to identify hanging threads (refer chapter 4.3).
The problems arising from wires are more difficult to prevent since wires actu-
ally represent a feature, that enables inter-bundle communication. A built-in
solution for restricting wires is represented by the security layer of the OSGi
framework. According to [OSG11b, ch. 2.2, p. 11] “the Framework security
model is based on the Java 2 specification”. Moreover, it includes a set of
OSGi specific permissions such as org.osgi.framework.PackagePermission

that enables to control the export and import functionality of bundles.

pub l i c c l a s s MySecurityManager extends SecurityManager {

pub l i c void checkExit (i n t s t a tu s) {
throw new Secur i tyExcept ion ("∗∗∗Not al lowed to stop

the VM∗∗∗") ;
}

}

Listing 4.4: Customized Security Manager that throws an exception once an
application attempts to stop the VM.

4.2.2 Using OSGi Security
A more suitable option for security than customizing the Java Security Manager
is represented by the OSGi security layer. It basically includes its own Security
Manager where executing System.exit() is prohibited by default. Moreover,
it extends the Security Manager by several OSGi specific permissions as

• AdaptPermission, that defines “a bundle’s authority to adapt an object
to a type” [OSG11b, ch. 9.1.1, p. 163].

• CapabilityPermission, that defines “a bundle’s authority to provide or
require a capability” [OSG11b, ch. 9.1.13, p. 195], while capabilities are
defined as “attribute sets in a specific name space” [OSG11b, ch. 3.3, p.
32].

• ServicePermission, that defines “a bundles authority to register or get
a service” [OSG11b, ch. 9.2.26, p. 228].

• BundlePermission, that defines “a bundle’s authority to require or pro-
vide a bundle or to receive or attach fragments” [OSG11b, ch. 9.1.11,
p. 193], while requiring a bundle implies that “the framework must take
all exported packages from a required bundle, including any packages”
[OSG11b, ch. 3.13.1, p. 66].

57

• PackagePermission, that defines “a bundle’s authority to import or ex-
port a package” [OSG11b, ch. 9.1.21, p. 222].

• AdminPermission, that defines “a bundle’s authority to perform specific
privileged administrative operations on or to get sensitive information
about a bundle” [OSG11b, ch. 9.1.3, p. 159].

With these fine-grained permissions most issues related to overlapping names-
paces (refer I2, chapter 3.4.2) and illegal control (refer I6, chapter 3.4.6) can be
resolved. Therefore, using OSGi security is mandatory when aiming to develop
isolated applications.
OSGi offers two different services for the management of permissions:

1. The Permission Admin service and

2. The Conditional Permission Admin service.

Since as outlined in [OSG11b, ch. 51, p. 291] “the Permission Admin has
been superseded by the Conditional Permission Admin”, the Permission Admin
Service is not explained in the following.
In order to activate the OSGi security layer in a JVM Server one needs to
activate the Java Security Manager as well. Therefore, as described in [IBM11d,
ch. 5, p. 88] activating the OSGi security layer in JVM Servers is achieved by
adding the lines

org.osgi.framework.security=osgi

-Djava.security.policy=/u/policies/all.policy

into the JVM profile. The second line is used to grant all permissions to the
JVM. Hence, as mentioned in [IBM11d, ch. 5, p. 88], the all.policy file includes
only the following content

grant {

permission java.security.AllPermission;

};

Local OSGi Security

A simple solution to activate the OSGi security layer is enabled by permis-
sions.perm files located in the bundle, that include all permissions needed for
the particular bundle, and as described in [HPM10, ch. 14.6], is located within
the OSGI-INF folder of the bundle. In order to activate the OSGi security layer
for particular bundles one needs to create an OSGI-INF folder that includes a
permissions.perm file containing all permissions granted to the bundle. Hence,
for a bundle to be able to import packages, for instance, the permissions.perm
file should contain the following line

(org.osgi.framework.PackagePermission "*" "import")

while the wildcart represents that all packages can be imported by the bundle.
Due to the simple activation and due to the fine-grained permissions, local
OSGi security represents a powerful approach towards application isolation.
Since, however, the security layer has no effect on bundles that do not include
a permissions.perm file, they are granted all permissions, local security might
not be a suitable solution in specific cases for isolating applications. Therefore,
a global approach of applying security is explained in the following.

58

Global OSGi Security

A more sophisticated approach towards application isolation and security in
OSGi bundles compared to local security is represented by the Conditional Per-
missions Admin Service. According to [OSG11b, ch. 50.1.3, p. 257]

“a Conditional Permission Admin service maintains a system wide
ordered table of ConditionalPermissionInfo objects. This table is
called the policy table. The policy table holds an encoded form of
conditions, permissions, and their allow/deny access type. A man-
ager can enumerate, delete, and add new policies to this table via a
ConditionalPermissionsUpdate object.”

One of the most important features of the Conditional Permission Admin is
that it “allows you to grant permissions based on arbitrary conditions. A con-
dition acts as a Boolean guard that determines whether a permission group is
applicable” [HPM10, ch. 14.4]. This feature enables a very fine-grained permis-
sion management based on particular constraints. Moreover, the Conditional
Permission Admin includes an access parameter that enables to define if a per-
mission is granted or denied (refer [OSG11b, ch. 50.2.5, p. 261]). This enables
to define black lists of permissions, which is not possible within the policy file
used by the Security Manager and the permissions.perm file used for local OSGi
security.
By default, the Conditional Permission Admin implements two different condi-
tions:

• the Bundle Signer Condition (refer [OSG11b, ch. 50.9.1]) and

• the Bundle Location Condition (refer [OSG11b, ch. 50.9.2].

There is, however, an option of defining customized conditions as explained in
[OSG11b, ch. 50.8]. It implies to define a condition as a set of checks with a
boolean return value within a class that implements the Condition interface
provided by the OSGi framework.
As described in [HPM10, ch. 14.4], there are three steps for using the Condi-
tional Permission Admin within an OSGi framework:

1. Acquire a a reference to the Conditional Permission Admin Service

2. Grant all permissions to the current bundle

3. Specify global permissions.

An example for these three steps is shown in listing 4.5.

/∗ 1 . Step : Get the Condi t iona l Permiss ions Admin s e r v i c e ∗/

Se rv i c eRe f e r ence cpaRre fe rence = context . g e tSe rv i c eRe f e r enc e (
Condit ionalPermissionAdmin . c l a s s . getName ()) ;

Condit ionalPermissionAdmin condit ionalPermiss ionAdmin = (
Condit ionalPermissionAdmin) context . g e tS e r v i c e (cpaRre fe rence) ;

/∗ 2 . Step : As s e c u r i t y agent attempt to grant a l l pe rmi s s i ons to
the cur rent bundle ∗/

59

Condi t ionIn fo c ond i t i on In f o = new Condi t ionIn fo (
BundleLocationCondit ion . c l a s s . getName () , new St r ing [] { context
. getBundle () . ge tLocat ion () }) ; Permi s s i on In fo pe rmi s s i on In f o =
new Permi s s i on In fo (Al lPermis s ion . c l a s s . getName () , "" , "") ;

Cond i t i ona lPe rmi s s i on In fo a l lP e rm i s s i o n s =
condit ionalPermiss ionAdmin . newCondit iona lPermiss ionIn fo (" agent
" , new Condi t ionIn fo [] { c ond i t i on In f o } , new Permi s s i on In fo []
{ pe rm i s s i on In f o } , Cond i t i ona lPermi s s i on In fo .ALLOW) ;

/∗ 3 . Step : Spec i f y g l oba l pe rmi s s i ons ∗/

St r ing encodedPermiss ion=new St r ing (" a l low { [org . o s g i . s e r v i c e .
condpermadmin . BundleLocationCondit ion \" f i l e : / usr / lpp / c i c s t s /
c i c s t s 4 2 / l i b /∗\"] (java . s e c u r i t y . A l lPermis s ion) } \"CICS\"") ;

Cond i t i ona lPe rmi s s i on In fo allowCICS = condit ionalPermiss ionAdmin .
newCondit iona lPermiss ionIn fo (encodedPermiss ion) ;

/∗ Update the pe rmi s s i ons t ab l e ∗/
Condit ionalPermiss ionUpdate permiss ionUpdate =

condit ionalPermiss ionAdmin . newCondit ionalPermiss ionUpdate () ;
L i s t i n f o s = permiss ionUpdate . g e tCond i t i ona lPe rmi s s i on In f o s () ;
i n f o s . c l e a r () ;
i n f o s . add (a l lP e rm i s s i o n s) ;
i n f o s . add (allowCICS) ;
permiss ionUpdate . commit () ;

Listing 4.5: Example of using the Conditional Permission Admin. Modified
after the CICS Explorer Security Example.

The basic procedure for adding new permissions using the Conditional Permis-
sion Admin is as follows

1. Create a ConditionInfo object, that describes the condition

2. Create a PermissionInfo object, that describes the permission

3. Create a ConditionalPermissionInfo object, that as described in [OSG11b,
ch. 50.14.5.5, p. 283] receives the following parameters

(a) a string describing the name that represents “a unique key to identify
the entry” [HPM10, ch. 14.4],

(b) the ConditionInfo object,

(c) the PermissionInfo object and

(d) a string naming the access parameter, also referred to as “access deci-
sion” in [OSG11b, ch. 50.14.5.5, p. 283], that as outlined in [HPM10,
ch. 14.4] can either be ConditionalPermissionInfo.ALLOW or Con-
ditionalPermissionInfo.DENY.

4. Get a ConditionalPermissionUpdate object

5. Create a list and save all permissions active of the policy table into the list
by using the getConditionalPermissionInfos() method of the Condi-
tionalPermissionUpdate object

6. Clear all entries within the list (optional step)

60

7. Add the created ConditionalPermissionInfo object into the list

8. Execute the commit() method of the ConditionalPermissionUpdate object
to save permissions into the policy table

Note that first two steps can be omitted when adding encoded conditional per-
missions, that as described in [OSG11b, ch. 50.14.6.7, p. 286] have the following
format

access {conditions permissions} name

An encoded conditional permission to grant all permissions to CICS specific
bundles, that are located in the directory /usr/lpp/cicsts/cicsts42/lib/ is
shown in listing 4.6.

St r ing encodedPermiss ion=new St r ing (" a l low { [org . o s g i . s e r v i c e .
condpermadmin . BundleLocationCondit ion \" f i l e : / usr / lpp / c i c s t s /
c i c s t s 4 2 / l i b /∗\"] (java . s e c u r i t y . A l lPermis s ion) } \"CICS\"") ;

Listing 4.6: Encoded conditional permission to allow the import of bundles.

Note that this specific permission is mandatory for the activation of the OSGi
security in JVM Servers due to the fact, that without all permissions granted
to the CICS bundles, no management of OSGi bundles would be possible.

The code shown in listing 4.5 can be added into an Activator class and the
corresponding bundle can be uploaded and installed as a ”normal” CICS bundle
within the JVM Server. Once installed, all actions carried out by bundles active
within the same JVM Server will be verified based on the policy table prior to
their execution.
A more suitable approach of installing a bundle that includes global security
permissions, referred to as the security bundle in the following, is described in
[IBM11d, ch. 5, p. 88]. It implies to install the security bundle as a ”mid-
dleware bundle” that according to [IBM11d, ch. 6, p. 126], is “installed in
the OSGi framework during the initialization of the JVM Server”. This implies,
that the security bundle does not need to be included within a CICS bundle and
moreover, that it is not managed by the CICS Explorer Management Interface.
Therefore, the explicit OSGi specific installation of middleware bundles using
the CICS Explorer Management Interface is not necessary.
As described in [IBM11d, ch. 5 , p.88], including a middleware bundle into a
JVM Server is simply carried out by adding the line

OSGI_BUNDLES=<path to bundle>

into the JVM profile.

In order to show that the security bundle restricts the actions that can be car-
ried out, the security bundle containing the code shown in listing 4.5 has been
installed into a JVM Server. In addition, the simple bundle shown in listing 4.7,
that basically prints a Hello CICS statement on the 3270 terminal, referred to
as the printer bundle in the following, has been installed as well. Due to the
fact, that the policy table created in listing 4.5 did not include a permission for
allowing to import packages and due to the fact that the printer bundle requires

61

the com.ibm.cics.server package to access the 3270 interface, the installation
of the printer bundle failed. As shown in listing 4.8 the reason was a Missing
Permission that can be granted by adding the code shown in listing 4.9 to the
security bundle.
Note that besides all the advantages enabled by the OSGi security layer, one
specific drawback needs to be considered. As discussed in [HS05], using the
Java Security Manager might lead to a performance degradation of the JVM.
Although no specific researches related to performance characteristics of the
OSGi security layer are known, due to the fact that it includes a Security Man-
ager, similar effects are expected.

package p r i n t e r ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s Pr in t e r {

pub l i c s t a t i c void main (CommAreaHolder CAH) {
Task t = Task . getTask () ;

t . out . p r i n t l n (" He l lo CICS") ;
}

}

Listing 4.7: Hello World application. Modified after the CICS Explorer
HelloWorld Example.

IBMUSER The CICS re sou r c e l i f e −cy c l e manager has s t a r t ed to
c r e a t e the BUNDLE re sou r c e c i c spx .
IBMUSER An except ion has been thrown by the route method o f
c l a s s com/ibm/ c i c s r o u t e r /Router running in
JVMSERVER DFH$JVMX. Exception ’The bundle " pr inter_4 . 0 . 0 [1 6] "
could not be r e s o l v ed . Reason : Miss ing Permiss ion :
(org . o s g i . framework . PackagePermission com . ibm . c i c s . s e r v e r

import) ,
Miss ing Constra int : Import−Package : com . ibm . c i c s . s e r v e r ;
v e r s i on ="0 .0 . 0" ’ .
An attempt to enable an OSGi bundle in JVM Server DFH$JVMX has
f a i l e d . OSGi bundle symbol ic name pr in t e r , v e r s i on 4 . 0 . 0 ,
reason code EXCEPTION_FROM_JVMSERVER.

CWWU The CICS re sou r c e l i f e −cy c l e manager has c rea ted the
BUNDLE re sou r c e c i c spx and the BUNDLE i s in the d i s ab l ed s t a t e

.
CWWU BUNDLE c i c spx has been i n s t a l l e d as d i s ab l ed because one
or more o f i t s a s s o c i a t ed r e s ou r c e s f a i l e d to i n s t a l l .

Listing 4.8: SDSF log describing a failed installation of the printer bundle due to
the fact that the installed security permissions did not allow to import bundles.

62

St r ing x=new St r ing (" a l low { (org . o s g i . framework . PackagePermission
\"∗\" \" import \") }\"IMPORT ALL\"") ;

Cond i t i ona lPe rmi s s i on In fo g loba l ImportPermiss ion =
condit ionalPermiss ionAdmin . newCondit iona lPermiss ionIn fo (x) ;

/ / . . .
i n f o s . add (g loba l ImportPermiss ion) ;
/ / . . .

Listing 4.9: Encoded conditional permission to allow the import of bundles.

4.3 Monitoring
Most causes of resource exhaustion such as over use of memory and compu-
tational resources, can be detected with applied monitoring. Therefore, it is
mandatory to use diagnostic tools provided for the JVM Server. The Java
Health Center for instance, that is enabled by adding the option

-Xhealthcenter:port=<port>

into the JVM profile, includes several panels such as

• The Class view, that shows an overview of loaded classes.

• The Garbage Collection view, that graphically gives an overview of the
heap and based on diagnostic messages such as shown in listing 3.12,
indicates possible memory leaks.

• The Thread view, that list all active threads as well as detailed information
such as owned or contended locks.

• The Method Profile view, that shows the computational resources used by
each method.

Moreover, monitoring is carried out during runtime of the JVM Server “with a
very small impact on the application’s performance” [IBM]. Therefore, using the
particular information provided by each panel, one is able to identify resource
exhaustion issues, such as outlined in I4 (refer chapter 3.4.4), prior to a denial of
service. In addition, hanging threads can also be identified as shown in figure 3.3
(refer I2, chapter 3.4.2). Note that the Java Health Center does not enable to
carry out specific administrational operations such as the termination of tasks or
deinstallation of bundles. These actions should be performed directly in CICS
using a 3270 terminal emulator or the CICS Explorer Management Interface.
The Java Health Center is a local software that is connected to a JVM Server.
Therefore, monitoring requires a particular amount of resources, especially for
information exchange between the remote and the local system. Since some
resource exhaustion issues result in massive denial of service, where no resources
for the Java Health Center communication might be left, real time monitoring is
not always the most suitable solution for the identification of causes for resource
exhaustion. In this case offline monitoring tools, that enable to inspect the heap
or the entire JVM coredump after the JVM Server was shutdown, should be
considered. The tools found to be most suitable for memory analysis of the JVM

63

Server are the Memory Analyzer2, that enables among others the identification
of memory leaks and the Garbage Collection and Memory Visualizer3, that
inspects among others the verbose garbage collection logs enabled by adding
-verbose:gc within the JVM profile of the JVM Server [IBM11d, ch. 7, p.
160]. For detailed dump analysis the Dump Analyzer4 represents a suitable
offline analysis tool.

4.4 CICS Services for Program Control
As outlined in issue I3, chapter 3.4.3, the use of the JNI can lead to severe prob-
lems, that can effect other applications active within the same JVM Server, while
the identification of possible causes responsible for errors is not straightforward
due to the missing abend code for segmentation faults for instance (refer chapter
3.4.3). Moreover, since the C program called out of a Java application is not
mapped to a CICS TCB but runs as a USS thread, all executions carried out by
the C program are not synchronized with other CICS applications. Therefore,
it is not advised to use the JNI in a JVM Server environment.
In order to execute C programs out of a Java application running within a JVM
Server however, one can make use of the CICS services for program control
provided within the JCICS library. These allow to call CICS programs defined
within the same CICS region out of a program; regardless the programming lan-
guage used for their creation. Therefore, one can call a C program out of a Java
application running within a JVM Server and omit the use of the JNI. Since all
CICS programs are mapped to a CICS TCB, the called program remains under
the control of CICS, that implies the advantages mentioned in chapter 2.3 such
as storage protection and synchronization. Moreover, the identification of errors
is less difficult since abend codes are provided for most errors that might appear
during program execution (refer [IBM11a]).
CICS provides two services for program control: link, and xctl. As explained in
[RBB+11, ch. 9.3.2, p. 289], using link implies that the calling program remains
control while using xctl leads to handing over control to the called program. A
graphical interpretation of differences between link and xctl is shown in figure
4.1. For a detailed instruction including code examples regarding the JCICS
services link and xctl, it is referred to [Hus11].
Apart from program control, CICS enables options for the exchange of informa-
tion between programs such as the COMMAREA. According to [RBB+11, ch.
9.22.1] “a COMMAREA is a facility that transfers information between two pro-
grams within a transaction or transfers information between two transactions
from the same terminal.” Therefore, by using program control services with the
COMMAREA as the preferred option of inter application communication, one
can omit the creation of wires and therefore, resolve most problems arising from
overlapping namespaces (refer I2, chapter 3.4.2). Note that this communication
technique is somewhat similar to communication between applications running
within different JVMs, where the Java Remote Method Invocation (RMI) is
used for information exchange. In addition to the COMMAREA, CICS offers
several data management services that are useful for global information storage.

2http://www.ibm.com/developerworks/java/jdk/tools/memoryanalyzer/
3http://www.ibm.com/developerworks/java/jdk/tools/gcmv/
4http://www.ibm.com/developerworks/java/jdk/tools/dumpanalyzer/

64

In context of these, CICS “implements two proprietary file structures, and pro-
vides commands to manipulate them” [IBM11d, ch. 3, p. 27]: the temporary
storage (TS) and the transient data (TD), both of which are “making data
readily available to multiple transactions” [IBM11d, ch. 3, p. 27]. While the
TS “queues can reside in main memory, or can be written to a storage device”
[IBM11d, ch. 3, p. 27], TD “queues are always written to a data set” [IBM11d,
ch. 3, p. 27].

(a) Program control flow with link indicat-
ing that control returns to program A after
program B terminates.

(b) Program control flow with xctl indicat-
ing that control is not returned to program
A after program B terminates.

Figure 4.1: Differentiation of program control flow. Modified after [Hus11, ch.
3.2.1, p. 20].

4.5 Extensions of the OSGi Framework
Several JVM and OSGi implementations have been developed in order to resolve
isolation issues of Java and the OSGi framework. Mueller for instance outlined
in [Mue05] more than ten proprietary solutions for enabling application isolation
in JVMs. Most of the mentioned solutions however, are either discontinued, as
the Echidna library and the Persistent Reusable Virtual Machine (resettable
JVM mode, refer [IBM01] and chapter 2.3.2) or outdated as the JKernel5 and
the Application Isolation API [Jav06] implemented in the Multitasking Virtual
Machine (refer [CD01]). Therefore, this section aims to outline recent (propri-
etary) solutions for application isolation in JVMs.

4.5.1 I-JVM
The I-JVM, introduced in [GTM+09], represents a modification of the JVM to
enable isolation, resource accounting and OSGi bundle termination. According
to [GTM+09, ch. 3, p. 6], “each bundle is executed within a separate isolate”.
Moreover, communication between isolates is achieved by “inter-isolate method
calls” [GTM+09, ch. 3, p. 6]. Therefore, according to [GD10, ch. 3, p. 4]

5http://www.cs.cornell.edu/slk/JKernel/Default.html

65

the I-JVM implements concepts from the Java Application Isolation API (refer
[Jav06]). In addition, the I-JVM implements a resource accounting monitor that
keeps track of all resources used by single isolates or bundles and a functionality
for safe bundle termination. Geoffray et. al. [GTM+09] proved that the I-JVM
solves problems arising from static fields of system classes (refer I1, chapter
3.4.1) and synchronized methods (I2, chapter 3.4.2). Moreover it resolves issues
of resource exhaustion (refer I4, chapter 3.4.4).

4.5.2 Hardened OSGi Implementation
Parrend and Frenot recommend in [PF09], that has served as a major reference
regarding OSGi vulnerabilities in chapter 3, several extensions of the OSGi
framework in order to resolve the vulnerabilities that cannot be resolved by
using the security layer. The issues related to application isolation, that have
also been discussed in chapter 3 are

• “Bundle Start Process: Launch the Bundle Activator in a separate thread”
[PF09, ch. 4.1, p. 491], that resolves issues with activator classes (refer
I5, chapter 3.4.5) and

• “OSGi Service Registration: set a platform property that explicitly limits
the number of registered services (default could be 50)” [PF09, ch. 4.1,
p. 491], that resolves the issue of infinite service registration (refer I4,
chapter 3.4.4).

4.5.3 Sandboxed OSGi
For the aim of “the execution of third party code not enough tested or not
known in advance, as well as other potentially dangerous code” [GD10, ch.
3], Gama and Didier introduce in [GD09] the Sandboxed OSGi, that basically
implements the Application Isolation API ([Jav06]) of the Multitasking Virtual
Machine (MVM, [CD01]). Therefore, each application in the Sandboxed OSGi
encapsulated within an isolate entity that as described in [Mue05, ch. 6.1] has
an own heap and communicates with other isolates through specific methods
provided by the Application Isolation API or by RMI.
Using this OSGi framework many issues outlined in chapter 3 are resolved due
to the facts that resources are not shared and no overlapping namespaces can
occur since communication is enabled only through predefined methods.
Note that this implementation follows the Java specification since only the OSGi
framework has been altered and since the MVM was officially introduced by SUN
within the scope of the Barcelona Project6.

4.5.4 OSGi RFC-0138 Multiple Frameworks In One JVM
An early draft of the OSGi framework specification version 4.3 [OSG10] defines
two approaches for isolating applications. The approach implies using “nested”
or “embedded” frameworks while “without the creation of special mechanisms to
share resources, each embedded framework provides an isolated scope” [OSG10,
ch. 3.1, p.10]. These embedded frameworks represent what is referred to as

6http://labs.oracle.com/projects/barcelona/

66

“composite bundles”, that encapsulate “constituent bundles”, which are isolated
from normal bundles by default. “Through a sharing policy, the composite is
in control of what capabilities from constituent bundles are exposed (exported)
out of the composite” [OSG10, ch. 5, p. 15].
Although this draft represents the most promising concept towards full appli-
cation isolation in OSGi platforms, it has not been included into the final OSGi
framework specification release 4.3.

4.5.5 Applicability to CICS
As mentioned in [GTM+09, ch. 3, p. 6] the I-JVM is based on a proprietary
JVM implementation, the LadyVM (refer [GTCF08]), that is not available for
the System z architecture. The same problem applies to the Sandboxed OSGi,
that is based on the MVM (refer [CD01]), which has not been developed to run
on the z/OS operating system.
The only suitable proprietary solutions therefore are represented by the Hard-
ened OSGi Implementation and by the OSGi RFC-0138 Multiple Frameworks
In One JVM. Since however, the RFC-0138 is an an standardized approach car-
ried out by the OSGi Alliance, it is found to be more suitable isolation approach
for being applied to a CICS environment.

67

Chapter 5

Summary and Conclusion

5.1 Key Result
Within the scope our investigations a detailed analysis of application isolation in
an enterprise critical Java Transaction Server environment has been provided. It
was shown that most known isolation issues remain yet to be resolved. Moreover,
it was shown that with the introduction of the OGSi framework new issues
came up. However, it was also shown that most issues can be resolved with
built-in functionalities provided by the Transaction Server environment used.
A summary of these solutions is discussed in the following.

5.2 Summary of Solutions
Using the CICS environment several Java related isolation issues are resolved
(refer chapter 3.3). Due to the fact that JVM Servers include the OSGi frame-
work, which implies namespace isolation by using different class loaders for
each bundle, applications active within a JVM Server are isolated by default.
However, it was shown that isolation remains incomplete and can be easily cir-
cumvented by wiring, leading to overlapping namespaces. Moreover, due to
the CICS environment and several additional functionalities provided by the
OSGi framework, new isolation problems such as illegal control (refer I6, chap-
ter 3.4.6) appear. However, as shown in chapter 4, most issues can be resolved
with built-in functionalities, such as the Java Security Manager, or with tools
provided for JVM Servers such as the Java Health Center.

Access to static fields discussed in I1 (refer chapter 3.4.1) and I2 (refer chapter
3.4.2), can be identified by the IBM CICS JVM Application Isolation Utility
(refer chapter 4.1.1). In addition, the utility also identifies the access to meth-
ods of system classes, such as the java.lang.Runtime class. As shown in I1

(refer chapter 3.4.1), the execution of particular methods from these classes can
lead to severe problems. Since, however, their execution can be prevented using
a standard or customized Security Manager or the OSGi security layer (refer
chapter 4.2), isolation issues mentioned in I1 (refer chapter 3.4.1) can be consid-
ered as resolved with applied static program analysis and active Java security
features.

68

Overlapping namespaces (refer I2, chapter 3.4.2) represent an issue more diffi-
cult to solve. Although one can prevent wiring with the OSGi specific Bundle
Permission, in some cases it might be necessary to enable inter bundle com-
munication. Once enabled by a particular permission, problems mentioned in
chapter 3.4.2, as access to static fields, data races in unsynchronized blocks and
hanging threads are likely to appear. Therefore, CICS services for program con-
trol are proposed as a secure alternative to wiring in terms of inter application
communication (refer chapter 4.4). In addition, since issues resulting from the
use of the JNI are severe (refer I3, chapter 3.4.3) and their causes are difficult
to identify, it is proposed to use CICS services for program control instead of
the JNI (refer chapter 4.4).
Due to the fact that the identification of issues resulting in resource exhaustion
(refer I4, chapter 3.4.4) is not straight forward, the only solution for prevention
of denial of service issues was found to be monitoring (refer chapter 4.3). As
shown in chapter 4.3, using tools provided for the JVM Server enables to iden-
tify upcoming resource shortages in real time.
As shown in I6 (refer chapter 3.4.6), the OSGi framework enables illegal control,
that represents a major isolation issue. Due to the fact that the OSGi security
layer includes specific permissions to control this feature, all problems related
to illegal control are considered as resolved with active OSGi security.

No solutions were found for hanging threads (refer I2, chapter 3.4.2) and in-
finite loops (refer I4, chapter 3.4.4) that also imply issues in Activator classes
(refer I5, chapter 3.4.5). Hanging threads within application code however, can
be detected with applied monitoring and affected bundles can be restarted, while
infinite loops can be identified with static program analysis as shown in chapter
4.1.2. Therefore, only the hanging management interface arising from hanging
threads within Activator classes is considered as a severe issue.

5.3 Outlook
In general, the integration of Java in CICS in terms of application isolation
was found to be a satisfying approach; especially due to the provided tools for
the JVM Server and due to the OSGi specific security layer. Since, however,
the OSGi security layer is expected to imply performance degradation similar
to the standard Security Manager (refer [HS05]), its activation may not be
suitable in certain enterprise critical applications. Therefore, extensions of the
OSGi framework such as the RFC-0138 (refer chapter 4.5.4) might be interesting
candidates in terms of isolating applications for future JVM Server releases.

69

Appendix A

Source Code

A.1 I1: System Classes

A.1.1 Changes to Static Fields of System Classes

// Bundle A

package a ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s Change
{

pub l i c s t a t i c void main (CommAreaHolder CAH)
{

Task t = Task . getTask () ;
i f (t == nu l l)

System . e r r . p r i n t l n ("Change c l a s s : Can ’ t get Task ")
;

e l s e

t . out . p r i n t l n (" S ta r t i ng bundle A") ;
t . out . p r i n t l n (" Current f i l e s epa ra to r : "+

System . getProperty (" f i l e . s epa ra to r ")) ;
t . out . p r i n t l n (" Changing f i l e s epa ra to r to \\")

;
System . se tProper ty (" f i l e . s epa ra to r " , "\\") ;
t . out . p r i n t l n (" Current f i l e s epa ra to r : "+

System . getProperty (" f i l e . s epa ra to r ")) ;

}
}

// Bundle B

package b ;

70

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s Access
{

pub l i c s t a t i c void main (CommAreaHolder CAH)
{

Task t = Task . getTask () ;
i f (t == nu l l)

System . e r r . p r i n t l n (" Access c l a s s : Can ’ t get Task ")
;

e l s e

t . out . p r i n t l n (" S ta r t i ng bundle B") ;
t . out . p r i n t l n (" Current f i l e s epa ra to r : "+

System . getProperty (" f i l e . s epa ra to r ")) ;

}
}

Listing A.1: Changes to the a static field of a system class are globally visible.

A.1.2 CICS Region Shutdown Using System.exit

package stop ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s StopJVM
{

pub l i c s t a t i c void main (CommAreaHolder CAH)
{

Task t = Task . getTask () ;
i f (t == nu l l)

System . e r r . p r i n t l n ("StopJVM c l a s s : Can ’ t get Task ") ;
e l s e

t . out . p r i n t l n (" Attempting to stop JVM") ;

System . e x i t (0) ;

t . out . p r i n t l n ("Attempt not succeeded ") ;

}
}

Listing A.2: Execution of java.lang.System.exit(0) from a bundle.

A.1.3 CICS Region Shutdown Using Runtime.halt

package ha l t ;

71

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s Shutdown {

/∗∗
∗ @param args
∗/

pub l i c s t a t i c void main (CommAreaHolder CAH) {

Task t = Task . getTask () ;

i f (t == nu l l) {
System . e r r . p r i n t l n ("Shutown c l a s s : Can ’ t get Task ")

;
}

e l s e {
t . out . p r i n t l n (" t r an sa c t i on s t a r t ed ") ;
t . out . p r i n t l n (" attempting to stop JVM") ;
Runtime . getRuntime () . ha l t (0) ;
t . out . p r i n t l n (" attempt not succeeded ") ;

}

}

}

Listing A.3: Execution of java.lang.Runtime.getRuntime.halt(0) from a bundle.

A.1.4 Execution of OS Commands Using Runtime.exec

package d e l e t e ;

import java . i o . BufferedReader ;
import java . i o . IOException ;
import java . i o . InputStreamReader ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s De leteAFi le {

pub l i c s t a t i c void main (CommAreaHolder CAH){

BufferedReader consoleOutput ;
Runtime currentRuntime = Runtime . getRuntime () ;
S t r ing l i n e ;

Process runt imeProcess ;
Task t = Task . getTask () ;

i f (t == nu l l) {
System . e r r . p r i n t l n (" DeleteAFi le c l a s s : Can ’ t get Task ") ;

}

e l s e {
t ry {

72

t . out . p r i n t l n (" t r an sa c t i on s t a r t ed . ") ;

S t r ing [] whoami={"/bin / sh","−c " ,"whoami "} ;
runt imeProcess = currentRuntime . exec (whoami) ;
consoleOutput = new BufferedReader (

new InputStreamReader (
runt imeProcess .
getInputStream ())) ;

t . out . p r i n t l n (" logged in as : "+consoleOutput .
readLine ()) ;

S t r ing [] l s ={"/bin / sh","−c " ," l s /u/prak101/
mypr ivated i r "} ;

runt imeProcess = currentRuntime . exec (l s) ;
consoleOutput = new BufferedReader (

new InputStreamReader (
runt imeProcess .
getInputStream ())) ;

t . out . p r i n t l n (" f i l e s in d i r e c t o r y be f o r e d e l e t i n g :
") ;

whi l e ((l i n e = consoleOutput . readLine ()) != nu l l) {
t . out . p r i n t l n (l i n e) ;
}

t . out . p r i n t l n (" attempting to remove \" myp r i v a t e f i l e
\"") ;

S t r ing [] remove ={"/bin / sh","−c " ,"rm /u/prak101/
mypr ivated i r / myp r i v a t e f i l e "} ;

runt imeProcess = currentRuntime . exec (remove) ;

runt imeProcess = currentRuntime . exec (l s) ;
consoleOutput = new BufferedReader (

new InputStreamReader (
runt imeProcess .
getInputStream ())) ;

t . out . p r i n t l n (" f i l e s in d i r e c t o r y a f t e r d e l e t i n g :
") ;

whi l e ((l i n e = consoleOutput . readLine ()) != nu l l) {
t . out . p r i n t l n (l i n e) ;

}
}

catch (IOException e) {
e . pr intStackTrace () ;
}

}
}

}

Listing A.4: Execution of OS commands from a bundle.

A.1.5 Stopping Active Transactions Using the Thread Class

package stopframework ;

import java . u t i l .Map;
import java . u t i l . Set ;

73

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s Stop {

pub l i c s t a t i c void main (CommAreaHolder CAH)
{

Task t = Task . getTask () ;

t . out . p r i n t l n (" Transact ion s t a r t ed ") ;

Map<Thread , StackTraceElement [] > threadMap=Thread .
getAl lStackTraces () ;

Set<Thread> threadSet=threadMap . keySet () ;

t . out . p r i n t l n (" Stopping a l l a c t i v e threads . . . ") ;

f o r (Thread currentThread : threadSet) {

i f (currentThread . getName () . conta in s ("STHR") != true) {
//do not stop cur rent task

t . out . p r i n t l n (" Suspending "+
currentThread . getName ()) ;

currentThread . stop () ;
}

}
t . out . p r i n t l n ("Done") ;

}
}

Listing A.5: Get and stop all transactions active within a JVM server using the
java.lang.Thread class.

A.2 I2: Overlapping Namespaces

A.2.1 Class loading in wired bundles

//Bundle A
package a ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s AClass {

pub l i c s t a t i c S t r ing myName="undef ined " ;

pub l i c s t a t i c void main (CommAreaHolder CAH){
Task t = Task . getTask () ;

i f (t == nu l l) {
System . e r r . p r i n t l n (" AClass : Can ’ t get Task ") ;

}
e l s e {

t . out . p r i n t l n (" Bundle a i s a c t i v e ! ") ;
}

74

}
}

//Bundle X
package x ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

import a . AClass ;

pub l i c c l a s s XClass {

pub l i c s t a t i c void main (CommAreaHolder CAH){

AClass a=new AClass () ;
S t r ing setName="Smith " ;

Task t = Task . getTask () ;

i f (t == nu l l) {
System . e r r . p r i n t l n ("CLass : Can ’ t get Task ") ;
}
e l s e {

t . out . p r i n t l n (" ## ins tance o f XClass ##") ;
t . out . p r i n t l n (" (XClass) c l a s s l oade r used

to load AClass : ") ;
t . out . p r i n t l n (a . ge tC la s s () . getClassLoader ()

) ;
t . out . p r i n t l n (" (XClass) cur r ent va lue o f

myName: "+a .myName) ;
t . out . p r i n t l n (" (XClass) changing value o f

myName") ;
a .myName=setName ;
t . out . p r i n t l n (" (XClass) cur r ent va lue o f

myName: "+a .myName) ;
}

}

}

//Bundle Y
package y ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

import a . AClass ;

pub l i c c l a s s YClass {

pub l i c s t a t i c void main (CommAreaHolder CAH){

AClass a=new AClass () ;
S t r ing setName="Doe " ;

Task t = Task . getTask () ;

i f (t == nu l l) {
System . e r r . p r i n t l n (" YClass : Can ’ t get Task ") ;

75

}
e l s e {

t . out . p r i n t l n (" ## ins tance o f YClass ##") ;
t . out . p r i n t l n (" (YClass) c l a s s l oade r used

to load AClass : ") ;
t . out . p r i n t l n (a . ge tC la s s () . getClassLoader ()

) ;

t . out . p r i n t l n (" (YClass) cur r ent va lue o f
myName: "+a .myName) ;

t . out . p r i n t l n (" (YClass) changing value o f
myName") ;

a .myName=setName ;
t . out . p r i n t l n (" (YClass) cur r ent va lue o f

myName: "+a .myName) ;
}

}

}

Listing A.6: Class loading is delegated to exporter bundle.

A.2.2 Threaded Access of a Shared Object (Data Race)

// AClass (in ABundle)
package abundle ;

import xbundle . XClass ;
import ybundle . YClass ;
import zbundle . ZClass ;

pub l i c c l a s s AClass {

pub l i c s t a t i c void main (St r ing [] a rgs) {

ZClass z=new ZClass () ;
XClass x=new XClass (z) ;
YClass y=new YClass (z) ;

System . out . p r i n t l n (" (A ob j e c t) S ta r t i ng data race :
") ;

x . s t a r t () ;
y . s t a r t () ;

}

}

// ZClass (in ZBundle)
package zbundle ;

pub l i c c l a s s ZClass {

p r i va t e i n t counter=0;

pub l i c i n t getCounter () {
re turn counter ;

}

76

pub l i c void setCounter (i n t x) {
t h i s . counter = x ;

}

}

// XClass (in XBundle)
package xbundle ;

import zbundle . ZClass ;

pub l i c c l a s s XClass extends Thread{

p r i va t e ZClass z ;

pub l i c XClass (ZClass ztemp) {
z=ztemp ;

}

pub l i c void run () {
i n t x=z . getCounter () ;

whi l e (x<=40){
x++;
System . out . p r i n t l n (" (X ob j e c t) va lue o f

counter be f o r e update : "+z . getCounter ()
) ;

System . out . p r i n t l n (" (X ob j e c t) updating
value o f counter to : "+x) ;

z . setCounter (x) ;
System . out . p r i n t l n (" (X ob j e c t) updated

value o f counter : "+z . getCounter ()) ;
}

}
}

// YClass (in YBundle)
package ybundle ;

import zbundle . ZClass ;

pub l i c c l a s s YClass extends Thread{

p r i va t e ZClass z ;

pub l i c YClass (ZClass ztemp) {
z=ztemp ;

}

pub l i c void run () {
i n t x=z . getCounter () ;

whi l e (x<=40){
x++;
System . out . p r i n t l n (" (Y ob j e c t) va lue o f

counter be f o r e update : "+z . getCounter ()
) ;

77

System . out . p r i n t l n (" (Y ob j e c t) updating
value o f counter to : "+x) ;

z . setCounter (x) ;
System . out . p r i n t l n (" (Y ob j e c t) updated

value o f counter : "+z . getCounter ()) ;
}

}
}

Listing A.7: Data race arising from threaded access of an object shared between
several classes that are located in different bundles.

A.3 I3: JNI

A.3.1 Segmentation Fault Caused via JNI

package seg ;

pub l i c c l a s s Fault {

p r i va t e nat ive void e xp l o i t () ;

pub l i c s t a t i c void main (St r ing [] a rgs) {

System . out . p r i n t l n (" Fault c l a s s attempting to
e xp l o i t segmentat ion f a u l t ") ;

new Fault () . e x p l o i t () ;
}

s t a t i c {
System . loadLibrary (" Fault ") ;

}

}

Listing A.8: Source code of OSGi bundle (Java) calling a C program with JNI.
Modified after [She99].

#include <j n i . h>
#include <s td i o . h>
#include " seg_Fault . h"

JNIEXPORT void JNICALL
Java_seg_Fault_exploit (JNIEnv ∗env , j o b j e c t obj)
{

int ∗ myAddress=0;
∗myAddress=4;

}

Listing A.9: Source code of C program.

/∗ DO NOT EDIT THIS FILE − i t i s machine generated ∗/
#include <j n i . h>
/∗ Header f o r c l a s s seg_Fault ∗/

78

#ifndef _Included_seg_Fault
#define _Included_seg_Fault
#ifdef __cplusplus
extern "C" {
#endif
/∗
∗ Class : seg_Fault
∗ Method : e x p l o i t
∗ Signature : ()V
∗/

JNIEXPORT void JNICALL Java_seg_Fault_exploit
(JNIEnv ∗ , j o b j e c t) ;

#ifdef __cplusplus
}
#endif
#endif

Listing A.10: Source code of header file generated by javah (C header file
generator).

A.3.2 Modification of private Fields via JNI

package alphapackage ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

import betapackage . BetaClass ;

pub l i c c l a s s AlphaClass {

p r i va t e nat ive void updateFie ld (BetaClass myobj , S t r ing
newName) ;

pub l i c s t a t i c void main (CommAreaHolder CAH) {
Task t = Task . getTask () ;

t . out . p r i n t l n (" t r an sa c t i on s t a r t ed ") ;

AlphaClass alphaObject= new AlphaClass () ;

t . out . p r i n t l n (" Creat ing new Beta ob j e c t ") ;
BetaClass betaObject=new BetaClass () ;

t . out . p r i n t l n (" Or i g i na l p r i va t e s t r i n g value o f
Beta ob j e c t : "+betaObject . getName ()) ;

S t r ing name="foobar " ;
t . out . p r i n t l n (" Updating p r i va t e f i e l d o f Beta

ob j e c t out o f C program via the JNI") ;
a lphaObject . updateFie ld (betaObject , name) ;
t . out . p r i n t l n ("Updated p r i va t e s t r i n g value o f Beta

ob j e c t : "+betaObject . getName ()) ;
}

s t a t i c {
System . loadLibrary (" Backdoor ") ;

}

79

}

Listing A.11: Source code of OSGi bundle (Alpha) calling a C program via the
JNI to modify a private field (myName) from bundle Beta.

package betapackage ;

pub l i c c l a s s BetaClass {

p r i va t e St r ing myName="BetaObj " ;

pub l i c S t r ing getName () {
re turn myName;

}

}

Listing A.12: Source code of OSGi bundle (Beta) defining the private string
myName.

#include <j n i . h>
#include <s td i o . h>
#include "alpha_AlphaClass . h"

JNIEXPORT void JNICALL
Java_alpha_Backdoor_updateField (JNIEnv ∗env , j o b j e c t obj , j o b j e c t

myobj , j s t r i n g j s t r)
{

stat ic j f i e l d ID f id_s = NULL; /∗ cached f i e l d ID fo r s ∗/
j c l a s s c l s = (∗ env)−>GetObjectClass (env , myobj) ;
i f (f id_s == NULL) {

f id_s = (∗ env)−>GetFieldID (env , c l s , " s " , "Ljava/
lang / St r ing ; ") ;

i f (f id_s == NULL) {
return ; /∗ excep t ion a l ready thrown ∗/

}
}

(∗ env)−>SetObjec tF ie ld (env , myobj , f id_s , j s t r) ;
}

Listing A.13: Source code of C program that updates a private field (myName)
of bundle Beta. Modified after [She99].

/∗ DO NOT EDIT THIS FILE − i t i s machine generated ∗/
#include <j n i . h>
/∗ Header f o r c l a s s alphapackage_AlphaClass ∗/

#ifndef _Included_alphapackage_AlphaClass
#define _Included_alphapackage_AlphaClass
#ifdef __cplusplus
extern "C" {
#endif
/∗
∗ Class : alphapackage_AlphaClass
∗ Method : updateFie ld
∗ Signature : (Lbetapackage/BetaClass ; Ljava/ lang / S t r ing ;)V
∗/

80

JNIEXPORT void JNICALL Java_alphapackage_AlphaClass_updateField
(JNIEnv ∗ , j ob j e c t , j ob j e c t , j s t r i n g) ;

#ifdef __cplusplus
}
#endif
#endif

Listing A.14: Source code of header file generated by javah (C header file
generator).

A.4 I4: Resource Exhaustion

A.4.1 Infinite Loop

package i n f l o o p ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s I n f i n i t eLoop {

pub l i c s t a t i c void main (CommAreaHolder CAH) {

Task t=Task . getTask () ;
t . out . p r i n t l n (" I n f i n i t e loop t r an sa c t i on s t a r t ed ")

;

boolean n e v e r f a l s e=true ;
whi l e (n e v e r f a l s e) {

// do nothing
}

}
}

Listing A.15: Bundle code containing an infinite loop.

A.4.2 Recursive Thread Creation

package manythreads ;

pub l i c c l a s s MyThread extends Thread{

s t a t i c i n t id ;

pub l i c void run () {

f o r (i n t i =0; i <35; i++){
id=id+1;
System . out . p r i n t l n ("Thread s t a r t ed . Id : "+

id) ;
new MyThread () . run () ;

}

}
}

81

package manythreads ;

pub l i c c l a s s Excess {

pub l i c s t a t i c void main (St r ing [] a rgs) {

Thread myThread=new MyThread () ;
myThread . run () ;

}
}

Listing A.16: Recursive thread creation. Modified after [PF09].

A.4.3 Infinite Service Registration

package b lu ep r i n t ;

pub l i c i n t e r f a c e Se rv i c e {
St r ing saySomething () ;

}

package se rv i c e imp lementat i on ;

import b lu ep r i n t . S e rv i c e ;

pub l i c c l a s s MyService implements Se rv i c e {

pub l i c S t r ing saySomething () {
re turn "He l lo from MyService " ;

}
}

package se rv i c e imp lementat i on ;

import org . o s g i . framework . BundleContext ;
import org . o s g i . framework . FrameworkUtil ;
import b lu ep r i n t . S e rv i c e ;
import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s Reg i s t r a t i on {

pub l i c s t a t i c void main (CommAreaHolder CAH){

Task t = Task . getTask () ;

BundleContext myBundleContext =
FrameworkUtil . getBundle (Reg i s t r a t i on .
c l a s s) . getBundleContext () ;

82

Se rv i c e my=new MyService () ;

t . out . p r i n t l n (" Reg i s t e r i ng s e r v i c e s ") ;

whi l e (t rue) {

myBundleContext . r e g i s t e r S e r v i c e (
S e rv i c e . c l a s s . getName () , my,

nu l l) ;
}

}
}

Listing A.17: Registration of identical services through an infinite loop.

A.4.4 Memory Leak

package memleak ;

pub l i c c l a s s L i s t
{

MemoryLeak mem;
L i s t next ;

}

package memleak ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

pub l i c c l a s s MemoryLeak
{

s t a t i c L i s t top ;

// each char array has 1MB
char [] memory = new char [1 0 4 8 5 7 6] ;

pub l i c s t a t i c void main (CommAreaHolder CAH)
{

Task t = Task . getTask () ;

// do not c r e a t e more than 4 i n s t an c e s o f MemoryLeak
f o r (i n t i = 0 ; i < 4 ; i++)
{

t . out . p r i n t l n (" Creat ing L i s t i n s t ance no . "+ i) ;
L i s t temp = new L i s t () ;
temp .mem = new MemoryLeak () ;
temp . next = top ;
top = temp ;

}
}

}

Listing A.18: Memory leak storing four megabytes of data permanently within
the heap. Modified after [Fri02].

83

A.5 I5: Issues with Activator Classes

A.5.1 Infinite Loop in the Activator

package z i n f l o o p a c t i v ;

import org . o s g i . framework . BundleActivator ;
import org . o s g i . framework . BundleContext ;

public class Act ivator implements BundleActivator {

private stat ic BundleContext context ;

stat ic BundleContext getContext () {
return context ;

}

public void s t a r t (BundleContext bundleContext) throws
Exception {

Act ivator . context = bundleContext ;

boolean n e v e r f a l s e=true ;
while (n e v e r f a l s e) {

//do nothing
}

}

public void stop (BundleContext bundleContext) throws
Exception {

Act ivator . context = null ;
}

}

Listing A.19: Source code of Activator with infinite loop.

A.5.2 Hanging Thread in the Activator

package zhangthreadact iv ;

import org . o s g i . framework . BundleActivator ;
import org . o s g i . framework . BundleContext ;

public class Act ivator implements BundleActivator {

private stat ic BundleContext context ;

stat ic BundleContext getContext () {
return context ;

}
public void s t a r t (BundleContext bundleContext) throws

Exception {
Act ivator . context = bundleContext ;
Thread myThread=new MyThread () ;
myThread . run () ;

}

public void stop (BundleContext bundleContext) throws
Exception {

84

Act ivator . context = null ;
}

}

Listing A.20: Source code Activator starting the hanging thread MyThread.

package zhangthreadact iv ;

public class MyThread extends Thread{

public void run () {

System . out . p r i n t l n ("Hanging␣ thread ␣ s t a r t ed ") ;
Thread . currentThread () . suspend () ;
System . out . p r i n t l n ("Hanging␣ thread ␣ended") ;

}
}

Listing A.21: Source code of hanging thread started by the Activator.

A.6 I6: Illegal Control

A.6.1 OSGi Bundle Context

//Alpha bundle
package alpha ;
import org . o s g i . framework . Bundle ;
import org . o s g i . framework . BundleContext ;
import org . o s g i . framework . BundleException ;
import org . o s g i . framework . FrameworkUtil ;
import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

public class AlphaClass {

public stat ic void main (CommAreaHolder CAH){

Task t = Task . getTask () ;

BundleContext myBundleContext = FrameworkUtil .
getBundle (AlphaClass . class) . getBundleContext () ;

Bundle [] l i s t=myBundleContext . getBundles () ;

t . out . p r i n t l n ("␣Transact ion ␣ s t a r t ed ") ;

t . out . p r i n t l n (" L i s t ␣ o f ␣ a l l ␣ a c t i v e ␣ bundles : ") ;

for (int i =0; i<l i s t . l ength ; i++){
t . out . p r i n t l n (l i s t [i] . getSymbolicName ()) ;
i f (l i s t [i] . getSymbolicName () . equa l s ("Beta")

) {
try {

l i s t [i] . s top () ;
l i s t [i] . u n i n s t a l l () ;

} catch (BundleException e) {

85

t . out . p r i n t l n ("Stopping ␣
bundle ␣not␣ s u c c e s s f u l ")
;

}
t . out . p r i n t l n ("done") ;

}
}
t . out . p r i n t l n (" L i s t ␣ o f ␣ a l l ␣ a c t i v e ␣ bundles : ") ;

for (int i =0; i<l i s t . l ength ; i++){
t . out . p r i n t l n (l i s t [i] . getSymbolicName ()) ;

}

t . out . p r i n t l n ("Transact ion ␣ended") ;

}
}

//Beta bundle
package beta ;

import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

public class BetaClass {

public stat ic void main (CommAreaHolder CAH){

Task t = Task . getTask () ;
t . out . p r i n t l n ("He l lo ␣World␣ from␣Beta␣bundle ") ;

}
}

Listing A.22: Source code of false control using the bundle context. Alpha
bundle stops and uninstalls Beta bundle.

A.6.2 OGSi Bundle Fragments

/∗ SomeBundle MANIFEST.MF:

Manifest−Version : 1.0
Bundle−ManifestVersion : 2
Bundle−Name: SomeBundle
Bundle−SymbolicName : SomeBundle
Bundle−Version : 1 . 0 . 0
Import−Package : com. ibm . c i c s . s e rve r ; ver s ion ="1.0.0" ,
myhiddenpackage ,
org . o s g i . framework ; ver s ion ="1.3.0"
Bundle−RequiredExecutionEnvironment : JavaSE−1.6
CICS−MainClass : somebundle . SomeClass ; a l i a s=some
∗/

package somebundle ;

import myhiddenpackage . MyHiddenClass ;
import com . ibm . c i c s . s e r v e r . CommAreaHolder ;
import com . ibm . c i c s . s e r v e r . Task ;

86

public class SomeClass {

public stat ic void main (CommAreaHolder CAH){

Task t = Task . getTask () ;

t . out . p r i n t l n ("␣Transact ion ␣ s t a r t ed ") ;
t . out . p r i n t l n ("Attempting␣ to ␣ ac c e s s ␣MyHiddenClass␣

o f ␣HostBundle") ;

MyHiddenClass my=new MyHiddenClass () ;
my. sayHe l lo () ;

t . out . p r i n t l n ("Done . ") ;

}
}

/∗ FragmentBundle MANIFEST.MF:

Manifest−Version : 1.0
Bundle−ManifestVersion : 2
Bundle−Name: FragmentBundle
Bundle−SymbolicName : FragmentBundle
Bundle−Version : 1 . 0 . 0
Fragment−Host : HostBundle ; bundle−ver s ion ="1.0.0"
Bundle−RequiredExecutionEnvironment : JavaSE−1.6
Export−Package : myhiddenpackage
∗/

/∗ HostBundle MANIFEST.MF:

Manifest−Version : 1.0
Bundle−ManifestVersion : 2
Bundle−Name: HostBundle
Bundle−SymbolicName : HostBundle
Bundle−Version : 1 . 0 . 0
Import−Package : com. ibm . c i c s . s e rve r ; ver s ion ="1.0.0" ,
org . o s g i . framework ; ver s ion ="1.3.0"
Bundle−RequiredExecutionEnvironment : JavaSE−1.6
∗/

package myhiddenpackage ;

import com . ibm . c i c s . s e r v e r . Task ;

public class MyHiddenClass {

public void sayHe l lo () {
Task t = Task . getTask () ;
t . out . p r i n t l n ("␣He l lo ␣ from␣MyHiddenClass") ;

}
}

Listing A.23: Unintended package export of myhiddenpackage enabled through
FragmentBundle.

87

Appendix B

Compact Disc (CD) Contents

A compact disk is attached to the hard copy of this document. Its contents are
listed in the following.

• The directory Thesis contains this document in PDF format while the
Tex files used for its creation are located in Thesis/Tex.

• The directory References contains all freely available online references.
The names of the files correspond to the abbreviations used in the bibli-
ography of this document.

• The directory Tutorial contains a tutorial in PDF format with detailed in-
structions and screenshots for practical software development using Eclipse
and the CICS Explorer SDK, while the directory Tutorial/Tex contains
the Tex files used for the creation of the document.

• The directory Code contains all Java code examples.

88

List of Abbrevations

ACID Atomicity, Consistency, Isolation, Durability

API Application Programming Interface

CICS Customer Control Information System

JEE Java Enterprise Edition

JNI Java Native Interface

JRE Java Runtime Environment

JVM Java Virtual Machine

SDK Software Development Kit

LE Language Environment

MVM Multi-Tasking Virtual Machine

OSGi Open Standard Gateway Initiative

OTE Open Transaction Environment

RMI Remote Method Invocation

PRVM Persistent Reusable Virtual Machine

SDSF System Display and Search Facility

TCB Task Control Block

TS Temporary Storage

TD Transient Data

USS Unix System Services

89

Bibliography

[APM+07] Nathaniel Ayewah, William Pugh, J. David Morgenthaler, John
Penix, and YuQian Zhou. Evaluating Static Analysis Defect Warn-
ings On Production Software. In Proceedings of the 7th ACM
SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, PASTE ’07, pages 1–8, New York, NY, USA,
2007. ACM. Available online at http://findbugs.cs.umd.edu/

papers/FindBugsExperiences07.pdf; Accessed on 22. March 2012.

[Arn11] Isabel Arnold. CICS TS V4.2 News Tour 2011: CICS
4.2 Java. Presentation slides, June 2011. Available on-
line at ftp://ftp.software.ibm.com/software/emea/de/events/
cics/CICSTSv42_Java.pdf; Accessed on 2. December 2011.

[AS07] David Aspinall and Jaroslav Sevcik. Java Memory Model Examples:
Good, Bad and Ugly. In VAMP 2007, Sep 2007. Available online
at http://groups.inf.ed.ac.uk/request/jmmexamples.pdf; Ac-
cessed on 10. February 2012.

[Bat08] Andrew Bates. Why to choose CICS Transaction Server for new
IT projects, 2008. Available online at http://www-01.ibm.com/

support/docview.wss?uid=swg27013865&aid=1; Accessed on 23.
November 2011.

[BCC+11] Frasier Bohm, Ben Cooper, Ben Cox, Elisabetta Flamini, Ivan
Hsrgreaves, and Matthew Webster. Running Java workloads
with CICS JVM server and OSGi, August 2011. Available on-
line at ftp://ftp.software.ibm.com/software//htp/cics/pdf/

CICS_TS_V4.2_Java_paper_final.pdf; Accessed on 2. December
2011.

[BD01] Mirza Beg and Mike Dahlin. A Memory Accounting Interface for The
Java Programming Language. Technical report, University of Texas
at Austin, 2001. Available online at http://www.cs.uwaterloo.ca/
~mbeg/papers/tr-01-40.pdf Accessed on 29. February 2012.

[BG97] Dirk Balfanz and Li Gong. Experience with Secure Multi-Processing
in Java. Technical report, Department of Computer Science, Prince-
ton University„ September 1997. Available online at http://sip.

cs.princeton.edu/pub/icdcs.pdf; Accessed on 13. January 2012.

90

http://findbugs.cs.umd.edu/papers/FindBugsExperiences07.pdf
http://findbugs.cs.umd.edu/papers/FindBugsExperiences07.pdf
ftp://ftp.software.ibm.com/software/emea/de/events/cics/CICSTSv42_Java.pdf
ftp://ftp.software.ibm.com/software/emea/de/events/cics/CICSTSv42_Java.pdf
http://groups.inf.ed.ac.uk/request/jmmexamples.pdf
http://www-01.ibm.com/support/docview.wss?uid=swg27013865&aid=1
http://www-01.ibm.com/support/docview.wss?uid=swg27013865&aid=1
ftp://ftp.software.ibm.com/software//htp/cics/pdf/CICS_TS_V4.2_Java_paper_final.pdf
ftp://ftp.software.ibm.com/software//htp/cics/pdf/CICS_TS_V4.2_Java_paper_final.pdf
http://www.cs.uwaterloo.ca/~mbeg/papers/tr-01-40.pdf
http://www.cs.uwaterloo.ca/~mbeg/papers/tr-01-40.pdf
http://sip.cs.princeton.edu/pub/icdcs.pdf
http://sip.cs.princeton.edu/pub/icdcs.pdf

[Blo05] Joshua Bloch. Java Puzzlers: Traps, Pitfalls, and Corner Cases.
Addison-Wesley, Upper Saddle River, NJ, 2005. Available online
at http://proquest.safaribooksonline.com/032133678X; Made
available through: Safari Books Online, LLC. Accessed on 19. March
2012.

[Bre11] Philipp Breitbach. IBM European WebSphere Technical Conference:
ICS TS 4.2 JVM Server Application Best Practises. Presentation
slides, October 2011.

[CD01] Grzegorz Czajkowski and Laurent Daynès. Multitasking without
Compromise: A Virtual Machine Evolution. In In ACM OOPSLA01,
2001. Available online at http://labs.oracle.com/projects/

barcelona/papers/oopsla01.pdf; Accessed on 14. January 2012.

[CS09] Roberto Chinnici and Bill Shannon. Java Platform, Enterprise
Edition (Java EE) Specification, v6, October 2009. Available
online at http://download.oracle.com/otndocs/jcp/javaee-6.

0-fr-oth-JSpec/; Accessed on 6. March 2012.

[Cuy07] Hans Cuypers. Discrete Mathematics. Lecture Notes, October
2007. Available online at http://www.win.tue.nl/~hansc/dw/

notes.pdf; Accessed on 3. January 2012.

[CvE98] Grzegorz Czajkowski and Thorsten von Eicken. JRes: A Resource
Accounting Interface for Java. In Proceedings of the 13th ACM
SIGPLAN conference on Object-oriented programming, systems, lan-
guages, and applications, OOPSLA ’98, pages 21–35, New York, NY,
USA, 1998. ACM. Available online at http://www.cs.cornell.edu/
slk/papers/oopsla98.ps Accessed on 29. February 2012.

[Cza00] Grzegorz Czajkowski. Application isolation in the Java Virtual
Machine. In Proceedings of the 15th ACM SIGPLAN conference
on Object-oriented programming, systems, languages, and applica-
tions, OOPSLA ’00, pages 354–366, New York, NY, USA, 2000.
ACM. Available online at http://labs.oracle.com/projects/

barcelona/papers/oopsla00.pdf; Accessed on 4. March 2012.

[Din04] Adair Dingle. Reclaiming Garbage and Education: Java Memory
Leaks. J. Comput. Small Coll., 20:8–16, December 2004.

[Eck11] David J. Eck. Introduction to Programming Using Java. Lulu Enter-
prises, Inc, Raleigh, North Carolina, USA, 6th ed edition, June 2011.
Available online at http://math.hws.edu/javanotes/; Accessed on
28. December 2011.

[Fri02] Geoff Friesen. Java 2 by Example. Que, Indianapolis, IN,
[2nd] edition, 2002. Available online at http://proquest.

safaribooksonline.com/0789725932; Made available through: Sa-
fari Books Online, LLC. Accessed on 5. February 2012.

[Gar09] Nick Garrod. The Evolution of CICS. IBMSystems
Magazine, September 2009. Available online at http:

91

http://proquest.safaribooksonline.com/032133678X
http://labs.oracle.com/projects/barcelona/papers/oopsla01.pdf
http://labs.oracle.com/projects/barcelona/papers/oopsla01.pdf
http://download.oracle.com/otndocs/jcp/javaee-6.0-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/javaee-6.0-fr-oth-JSpec/
http://www.win.tue.nl/~hansc/dw/notes.pdf
http://www.win.tue.nl/~hansc/dw/notes.pdf
http://www.cs.cornell.edu/slk/papers/oopsla98.ps
http://www.cs.cornell.edu/slk/papers/oopsla98.ps
http://labs.oracle.com/projects/barcelona/papers/oopsla00.pdf
http://labs.oracle.com/projects/barcelona/papers/oopsla00.pdf
http://math.hws.edu/javanotes/
http://proquest.safaribooksonline.com/0789725932
http://proquest.safaribooksonline.com/0789725932
http://www.ibmsystemsmag.com/mainframe/administrator/cics/Modern-Information-Management/The-Evolution-of-CICS/
http://www.ibmsystemsmag.com/mainframe/administrator/cics/Modern-Information-Management/The-Evolution-of-CICS/

//www.ibmsystemsmag.com/mainframe/administrator/cics/

Modern-Information-Management/The-Evolution-of-CICS/;
Accessed on 14. November 2011.

[GD09] Kiev Gama and Didier Donsez. Towards Dynamic Component Iso-
lation in a Service Oriented Platform. In Proceedings of the 12th In-
ternational Symposium on Component-Based Software Engineering,
CBSE ’09, pages 104–120, Berlin, Heidelberg, 2009. Springer-Verlag.
Available online at http://membres-liglab.imag.fr/donsez/pub/
publi/cbse2009-gamadonsez.pdf; Accessed on 9. March 2012.

[GD10] Kiev Gama and Didier Donsez. A survey on approaches for address-
ing dependability attributes in the OSGi service platform. SIGSOFT
Softw. Eng. Notes, 35(3):1–8, May 2010.

[GJSB05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The
Java Language Specification Third Edition. Addison-Wesley, May
2005. Available online at http://java.sun.com/docs/books/jls/

download/langspec-3.0.pdf; Accessed on 8. December 2011.

[GM96] James Gosling and Henry McGilton. The Java Language Environ-
ment: A white paper, May 1996. Available online at http://www.

oracle.com/technetwork/java/index-136113.html; Accessed on
8. December 2011.

[Gon03] Li Gong. Java 2 Platform Security Architecture, 2003. Available
online at http://docs.oracle.com/javase/1.4.2/docs/guide/

security/spec/security-spec.doc.html; Accessed on 15. Decem-
ber 2011.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David
Holmes, and Doug Lea. Java Concurrency in Practice. Addison-
Wesley, Upper Saddle River, NJ, c2006. Available online at http:

//proquest.safaribooksonline.com/0321349601; Made available
through: Safari Books Online, LLC. Accessed on 3. January 2012.

[GR93] Jim Gray and Andreas Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[GTCF08] N. Geoffray, G. Thomas, C. Clément, and B. Folliot. A Lazy De-
veloper Approach: Building a JVM with Third Party Software. In
International Conference on Principles and Practice of Programming
In Java (PPPJ 2008) , Modena, Italy, September 2008. Available on-
line at http://pagesperso-systeme.lip6.fr/Nicolas.Geoffray/
files/pppj-08.pdf; Accessed on 26. March 2012.

[GTM+09] Nicolas Geoffray, Gaël Thomas, Gilles Muller, Pierre Parrend,
Stéphane Frénot, and Bertil Folliot. I-JVM: a Java Virtual Machine
for component isolation in OSGi. In DSN, pages 544–553, 2009.

[Hac06] Steven R. Hackenberg. CICS open transaction environ-
ment and other TCB performance considerations. In Int.
CMG Conference, pages 967–974, 2006. Available online at

92

http://www.ibmsystemsmag.com/mainframe/administrator/cics/Modern-Information-Management/The-Evolution-of-CICS/
http://www.ibmsystemsmag.com/mainframe/administrator/cics/Modern-Information-Management/The-Evolution-of-CICS/
http://membres-liglab.imag.fr/donsez/pub/publi/cbse2009-gamadonsez.pdf
http://membres-liglab.imag.fr/donsez/pub/publi/cbse2009-gamadonsez.pdf
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf
http://java.sun.com/docs/books/jls/download/langspec-3.0.pdf
http://www.oracle.com/technetwork/java/index-136113.html
http://www.oracle.com/technetwork/java/index-136113.html
http://docs.oracle.com/javase/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://docs.oracle.com/javase/1.4.2/docs/guide/security/spec/security-spec.doc.html
http://proquest.safaribooksonline.com/0321349601
http://proquest.safaribooksonline.com/0321349601
http://pagesperso-systeme.lip6.fr/Nicolas.Geoffray/files/pppj-08.pdf
http://pagesperso-systeme.lip6.fr/Nicolas.Geoffray/files/pppj-08.pdf

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.

1.83.3952&rep=rep1&type=pdf; Accessed on 30. November 2011.

[HKS04] Paul Herrmann, Udo Kebschull, and Wilhelm G. Spruth. Einführung
in z/OS und OS/390: Web-Services und Internet-Anwendungen für
Mainframes. Oldenbourg, Munich, 2., korr. aufl. edition, 2004.

[Hor00] John Horswill. Designing and Programming CICS Applications.
O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472,
July 2000.

[HP07] Marieke Huisman and Gustavo Petri. The Java Memory Model: a
Formal Explanation. In Verification and Analysis of Multi-threaded
Java-like Programs (VAMP), pages 81–96, 2007. Available on-
line at http://www-sop.inria.fr/everest/personnel/Gustavo.

Petri/publis/jmm-vamp07.pdf; Accessed on 2. January 2012.

[HPM10] R. Hall, K. Pauls, and S. McCulloch. Osgi in Action: Creating Mod-
ular Applications in Java. Manning Pubs Co Series. Manning Pub-
lications, April 2010. Available online at http://proquest.tech.

safaribooksonline.de/9781933988917/; Made available through:
Safari Books Online, LLC. Accessed on 17. March 2012.

[HS05] Almut Herzog and Nahid Shahmehri. Performance of the Java
security manager. Computers & Security, 24(3):192 – 207, 2005.
Available online at http://rewerse.eu/publications/download/

REWERSE-RP-2005-141.pdf; Accessed on 26. March 2012.

[Hus11] Stefan Huster. Software Integration mit Java und XML
unter CICS. Masterthesis, January 2011. Available on-
line at http://www-ti.informatik.uni-tuebingen.de/~spruth/

DiplArb/Huster.pdf; Accessed on 8. March 2012.

[Hyd99] Paul Hyde. Java Thread Programming. Sams Pub., Indi-
anapolis, Ind., c1999. Available online at http://proquest.

safaribooksonline.com/0672315858; Made available through: Sa-
fari Books Online, LLC. Accessed on 3. January 2012.

[IBM] IBM Corp. IBM Monitoring and Diagnostic Tools for Java - Health
Center Version 2.0. Website. Available online at http://www.ibm.

com/developerworks/java/jdk/tools/healthcenter/; Accessed
on 26. March 2012.

[IBM91] IBM Corp. CICS Programming Primer, 1991. Available on-
line at http://www.informatik.uni-leipzig.de/cs/Literature/
Textbooks/CicsCobPrimer.pdf; Accessed on 17. November 2011.

[IBM01] IBM Corp. New IBM Technology featuring Persistent Reusable
Java Virtual Machines, October 2001. Available online at
http://www-03.ibm.com/systems/resources/servers_eserver_

zseries_software_java_pdf_prjvm13.pdf; Accessed on 29.
November 2011.

93

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.3952&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.83.3952&rep=rep1&type=pdf
http://www-sop.inria.fr/everest/personnel/Gustavo.Petri/publis/jmm-vamp07.pdf
http://www-sop.inria.fr/everest/personnel/Gustavo.Petri/publis/jmm-vamp07.pdf
http://proquest.tech.safaribooksonline.de/9781933988917/
http://proquest.tech.safaribooksonline.de/9781933988917/
http://rewerse.eu/publications/download/REWERSE-RP-2005-141.pdf
http://rewerse.eu/publications/download/REWERSE-RP-2005-141.pdf
http://www-ti.informatik.uni-tuebingen.de/~spruth/DiplArb/Huster.pdf
http://www-ti.informatik.uni-tuebingen.de/~spruth/DiplArb/Huster.pdf
http://proquest.safaribooksonline.com/0672315858
http://proquest.safaribooksonline.com/0672315858
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.informatik.uni-leipzig.de/cs/Literature/Textbooks/CicsCobPrimer.pdf
http://www.informatik.uni-leipzig.de/cs/Literature/Textbooks/CicsCobPrimer.pdf
http://www-03.ibm.com/systems/resources/servers_eserver_zseries_software_java_pdf_prjvm13.pdf
http://www-03.ibm.com/systems/resources/servers_eserver_zseries_software_java_pdf_prjvm13.pdf

[IBM04a] IBM Corp. CICS - An Introduction, 2004. Presentation slides. Avail-
able online at ftp://public.dhe.ibm.com/software/htp/cics/

PDF/cics_introduction.pdf Accessed on 14. November 2011.

[IBM04b] IBM Corp. CICS: 35 years. Website, 2004. Available online at http:
//www-01.ibm.com/software/htp/cics/35/60s/; Accessed on 14.
November 2011.

[IBM05] IBM Corp. TXSeries for Multiplatforms: Concepts and Planning,
2005. Available online at http://publib.boulder.ibm.com/

infocenter/txformp/v5r1/topic/com.ibm.txseries510.doc/

atshak02.pdf; Accessed on 16. November 2011.

[IBM10a] IBM Corp. Language Environment Programming Guide, 2010.
Available online at http://publibz.boulder.ibm.com/epubs/pdf/
ceea21b0.pdf; Accessed on 28. November 2011.

[IBM10b] IBM Corp. z/OS concepts, 2010. Available online at
http://publib.boulder.ibm.com/infocenter/zos/basics/

topic/com.ibm.zos.zconcepts/zconcepts_book.pdf; Accessed
on 18. November 2011.

[IBM11a] IBM Corp. CICS Messages and Codes Vol. 2, 2011. Available
online at http://publib.boulder.ibm.com/infocenter/cicsts/

v4r2/topic/com.ibm.cics.ts.messages.doc/dfhg4v2_pdf.pdf;
Accessed on 13. February 2012.

[IBM11b] IBM Corp. CICS Transaction Server for z/OS Version 4 Release 2:
Application Programming Guide, 2011. Available online at http:

//publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/

com.ibm.cics.ts.applicationprogramming.doc/dfhp3_pdf.pdf;
Accessed on 30. November 2011.

[IBM11c] IBM Corp. CICS Transaction Server for z/OS Version 4 Release
2: Upgrading from CICS TS Version 3.1, 2011. Available on-
line at http://publib.boulder.ibm.com/infocenter/cicsts/

v4r2/topic/com.ibm.cics.ts.migration.doc/dfheg_pdf.pdf;
Accessed on 27. February 2012.

[IBM11d] IBM Corp. Java Applications in CICS (Version 4 Release 2), 2011.
Available online at http://publib.boulder.ibm.com/infocenter/
cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/dfhpj_pdf.pdf;
Accessed on 28. November 2011.

[IBM11e] IBM Corp. Techreport: History of CICS. Website, 2011. Avail-
able online at https://www-304.ibm.com/support/docview.wss?

uid=swg21025234; Accessed on 24. November 2011.

[Jav06] Java Community Process. Sr-000121 application isolation api speci-
fication. Website, February 2006. Available online at http://jcp.

org/aboutJava/communityprocess/final/jsr121/index.html;
Accessed on 31. January 2012.

94

ftp://public.dhe.ibm.com/software/htp/cics/PDF/cics_introduction.pdf
ftp://public.dhe.ibm.com/software/htp/cics/PDF/cics_introduction.pdf
http://www-01.ibm.com/software/htp/cics/35/60s/
http://www-01.ibm.com/software/htp/cics/35/60s/
http://publib.boulder.ibm.com/infocenter/txformp/v5r1/topic/com.ibm.txseries510.doc/atshak02.pdf
http://publib.boulder.ibm.com/infocenter/txformp/v5r1/topic/com.ibm.txseries510.doc/atshak02.pdf
http://publib.boulder.ibm.com/infocenter/txformp/v5r1/topic/com.ibm.txseries510.doc/atshak02.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea21b0.pdf
http://publibz.boulder.ibm.com/epubs/pdf/ceea21b0.pdf
http://publib.boulder.ibm.com/infocenter/zos/basics/topic/com.ibm.zos.zconcepts/zconcepts_book.pdf
http://publib.boulder.ibm.com/infocenter/zos/basics/topic/com.ibm.zos.zconcepts/zconcepts_book.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.messages.doc/dfhg4v2_pdf.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.messages.doc/dfhg4v2_pdf.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/dfhp3_pdf.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/dfhp3_pdf.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.applicationprogramming.doc/dfhp3_pdf.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.migration.doc/dfheg_pdf.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.migration.doc/dfheg_pdf.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/dfhpj_pdf.pdf
http://publib.boulder.ibm.com/infocenter/cicsts/v4r2/topic/com.ibm.cics.ts.java.doc/dfhpj_pdf.pdf
https://www-304.ibm.com/support/docview.wss?uid=swg21025234
https://www-304.ibm.com/support/docview.wss?uid=swg21025234
http://jcp.org/aboutJava/communityprocess/final/jsr121/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr121/index.html

[Kop11a] Michael Kopp. The Top Java Memory Problems -
Part 1. about:performance, April 2011. Available
online at http://blog.dynatrace.com/2011/04/20/

the-top-java-memory-problems-part-1/; Accessed on 14.
February 2012.

[Kop11b] Michael Kopp. The Top Java Memory Problems -
Part 2. about:performance, December 2011. Avail-
able online at http://blog.dynatrace.com/2011/12/15/

the-top-java-memory-problems-part-2/; Accessed on 14.
February 2012.

[Ler01] Xavier Leroy. Java Bytecode Verification: An Overview, 2001.
Available online at http://gallium.inria.fr/~xleroy/publi/

survey-bytecode-verification.ps.gz; Accessed on 20. December
2011.

[Lip08] Martin Lippert. Classloading and Type Visibility in OSGi. Presen-
tation slides, 2008. Available online at http://www.martinlippert.
org/events/WJAX2008-ClassloadingTypeVisibilityOSGi.pdf;
Accessed on 2. February 2012.

[LY99] Tim Lindholm and Frank Yellin. The Java Virtual Ma-
chine Specification. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2nd ed edition, 1999. Available on-
line at http://java.sun.com/docs/books/jvms/second_edition/
html/VMSpecTOC.doc.html; Accessed on 21. December 2011.

[MF99] Gary McGraw and Ed Felden. Securing Java. John Wiley & Sons,
Inc., January 1999. Available online at http://www.securingjava.
com/; Accessed on 15. December 2011.

[MPAM99] Jeremy Manson, William Pugh, Sarita V. Adve, and Jeremy Man-
son. The Java Memory Model. In In ACM Java Grande Conference,
1999. Available online at http://www.cs.uoregon.edu/Classes/

06W/cis607atom/readings/manson-pugh-adve-popl05.pdf; Ac-
cessed on 2. January 2012.

[Mue05] Jens Mueller. Anwendungs- und Transaktionsisolation unter Java,
May 2005. Available online at http://www-ti.informatik.

uni-tuebingen.de/~spruth/DiplArb/jmueller.pdf; Accessed on
8. December 2011.

[Nyl99] Joel Nylund. Memory Leaks in Java Programs. Ap-
plication Development Trends, December 1999. Avail-
able online at http://adtmag.com/articles/1999/12/24/

memory-leaks-in-java-programs.aspx; Accessed on 14. February
2012.

[Oak98] Scott Oaks. Java Security. O’Reilly & Associates, Inc, 101 Mor-
ris Street, Sebastopol, CA 95472, May 1998. Available online at
http://docstore.mik.ua/orelly/java-ent/security/; Accessed
on 14. December 2011.

95

http://blog.dynatrace.com/2011/04/20/the-top-java-memory-problems-part-1/
http://blog.dynatrace.com/2011/04/20/the-top-java-memory-problems-part-1/
http://blog.dynatrace.com/2011/12/15/the-top-java-memory-problems-part-2/
http://blog.dynatrace.com/2011/12/15/the-top-java-memory-problems-part-2/
http://gallium.inria.fr/~xleroy/publi/survey-bytecode-verification.ps.gz
http://gallium.inria.fr/~xleroy/publi/survey-bytecode-verification.ps.gz
http://www.martinlippert.org/events/WJAX2008-ClassloadingTypeVisibilityOSGi.pdf
http://www.martinlippert.org/events/WJAX2008-ClassloadingTypeVisibilityOSGi.pdf
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://java.sun.com/docs/books/jvms/second_edition/html/VMSpecTOC.doc.html
http://www.securingjava.com/
http://www.securingjava.com/
http://www.cs.uoregon.edu/Classes/06W/cis607atom/readings/manson-pugh-adve-popl05.pdf
http://www.cs.uoregon.edu/Classes/06W/cis607atom/readings/manson-pugh-adve-popl05.pdf
http://www-ti.informatik.uni-tuebingen.de/~spruth/DiplArb/jmueller.pdf
http://www-ti.informatik.uni-tuebingen.de/~spruth/DiplArb/jmueller.pdf
http://adtmag.com/articles/1999/12/24/memory-leaks-in-java-programs.aspx
http://adtmag.com/articles/1999/12/24/memory-leaks-in-java-programs.aspx
http://docstore.mik.ua/orelly/java-ent/security/

[Ora11a] Oracle. Java Native Interface (Technote). Website, 2011. Available
online at http://docs.oracle.com/javase/6/docs/technotes/

guides/jni/; Accessed on 1. February 2012.

[Ora11b] Oracle. Java Platform, Standard Edition 6 API Specification. Web-
site, 2011. Available online at http://docs.oracle.com/javase/6/
docs/api/; Accessed on 2. February 2012.

[Ora12] Oracle. Trail: The Reflection API. Tutorial, 2012. Available on-
line at http://docs.oracle.com/javase/tutorial/reflect/; Ac-
cessed on 26. February 2012.

[OSG10] OSGi Alliance. Version 4.3 Core Early Draft 1, April 2010.
Available online at http://www.osgi.org/download/osgi-core-4.
3-early-draft1.pdf; Accessed on 26. March 2012.

[OSG11a] OSGi Alliance. Website, 2011. Available online at http://www.osgi.
org/; Accessed on 1. December 2011.

[OSG11b] OSGi Alliance. OSGi Service Platform Core Specification Release 4
Version 4.3, April 2011. Available online at http://www.osgi.org/
download/r4v41/r4.core.pdf; Accessed on 30. November 2011.

[OW99] Scott Oaks and Henry Wong. Java Threads. Java series (OReilly &
Associates). OReilly & Associates, Sebastopol, CA, 2nd ed edition,
1999. Available online at http://proquest.safaribooksonline.

com/1565924185; Made available through: Safari Books Online,
LLC. Accessed on 29. December 2011.

[PF09] Pierre Parrend and Stéphane Frénot. Security benchmarks of OSGi
platforms: towards Hardened OSGi. Softw. Pract. Exper., 39:471–
499, April 2009.

[RAB+10] Chris Rayns, Edward Addison, Diana Blair, George Bogner, David
Carey, Tony Fitzgerald, Scott McClure, Christen Plum, John Till-
ing, and Andy Wright. Threadsafe Considerations for CICS.
IBM International Technical Support Organization (ITSO), Novem-
ber 2010. Available online at http://www.redbooks.ibm.com/

redbooks/pdfs/sg246351.pdf; Accessed on 28. November 2011.

[RAR07] Jan S. Rellermeyer, Gustavo Alonso, and Timothy Roscoe. R-
OSGi: Distributed Applications Through Software Modularization.
In In Proceedings of the ACM/IFIP/USENIX 8th International Mid-
dleware Conference, 2007. Available online at http://www.inf.

ethz.ch/personal/troscoe/pubs/middleware07-rosgi.pdf; Ac-
cessed on 2. December 2011.

[RBB+10] Chris Rayns, George Bogner, Nicholas Bingell, Gordon Keehn, Lisa
Fellows, Tommy Joergensen, and Erhard Woerner. IBM CICS Ex-
plorer. IBM International Technical Support Organization (ITSO),
December 2010. Available online at http://www.redbooks.ibm.

com/redbooks/pdfs/sg247778.pdf; Accessed on 1. February 2012.

96

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
http://docs.oracle.com/javase/6/docs/technotes/guides/jni/
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/6/docs/api/
http://docs.oracle.com/javase/tutorial/reflect/
http://www.osgi.org/download/osgi-core-4.3-early-draft1.pdf
http://www.osgi.org/download/osgi-core-4.3-early-draft1.pdf
http://www.osgi.org/
http://www.osgi.org/
http://www.osgi.org/download/r4v41/r4.core.pdf
http://www.osgi.org/download/r4v41/r4.core.pdf
http://proquest.safaribooksonline.com/1565924185
http://proquest.safaribooksonline.com/1565924185
http://www.redbooks.ibm.com/redbooks/pdfs/sg246351.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg246351.pdf
http://www.inf.ethz.ch/personal/troscoe/pubs/middleware07-rosgi.pdf
http://www.inf.ethz.ch/personal/troscoe/pubs/middleware07-rosgi.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247778.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247778.pdf

[RBB+11] Chris Rayns, Sarah Bertram, George Bogner, Chris Carlin, An-
dre Clark, Amy Ferrell, Gordon Keehn, Peter Klein, Ronald Lee,
and Erhard Woerner. CICS Transaction Server from Start to Fin-
ish. IBM International Technical Support Organization (ITSO), De-
cember 2011. Available online at http://www.redbooks.ibm.com/

redbooks/pdfs/sg247952.pdf; Accessed on 8. March 2012.

[RBC+09] Chris Rayns, George Burgess, Scott Clee, Tom Grieve, John Tay-
lor, Yun Peng Ge, Guo Qiang Li, Qian Zhang, and Derek Wen.
Java Application Development for CICS. IBM International Tech-
nical Support Organization (ITSO), February 2009. Available online
at http://www.redbooks.ibm.com/redbooks/pdfs/sg245275.pdf;
Accessed on 24. November 2011.

[Roe01] Alex Roetters. Writing multithreaded Java applications. Online
Article, February 2001. Available online at http://www.ibm.com/

developerworks/java/library/j-thread/index.html; Accessed
on 3. January 2012.

[RSW04] Thomas Reps, Mooly Sagiv, and Reinhard Wilhelm. Static Program
Analysis via 3-Valued Logic. In Rajeev Alur and Doron Peled, ed-
itors, Computer Aided Verification, volume 3114 of Lecture Notes
in Computer Science, pages 401–404. Springer Berlin / Heidelberg,
2004. Available online at http://groups.csail.mit.edu/cag/crg/
papers/reps04shape.pdf; Accessed on 22. March 2012.

[San04] Bo Sandén. Coping with java threads. Computer, 37(4):20–27,
April 2004. Available online at http://www.cse.chalmers.se/edu/
course/ZZ_courses_2011/EDA222/Documents/Misc/Risky_Java.

pdf; Accessed on 27. March 2012.

[Sev08] Jaroslav Sevcik. Program Transformations in Weak Memory Mod-
els. PhD thesis, School of Informatics, University of Edinburgh,
2008. Available online at http://www.cl.cam.ac.uk/~js861/

thesis.pdf; Accessed on 10. February 2012.

[She99] Liang Sheng. The Java Native Interface: Programmer’s Guide and
Specification. Java series. Addison-Wesley, Reading, MA, 1999. Avail-
able online at http://java.sun.com/docs/books/jni/download/

jni.pdf; Accessed on 1. February 2012.

[Sil05] Abraham Silberschatz. Operating System Concepts, 2005.
Available online at http://proquest.safaribooksonline.com/

9780471694663; Made available through: Safari Books Online, LLC.
Accessed on 30. December 2011.

[Spr08] Wilhelm G. Spruth. Enterprise Computing lecture slides, 2008.
Available online at http://www-ti.informatik.uni-tuebingen.

de/~spruth/vorlesung_cs/CSSUM09.pdf; Accessed on 17. Novem-
ber 2011.

[Spr10] Wilhelm G. Spruth. System z and z/OS unique Characteristics. Tech-
nical report, Wilhelm Schickard Institute for Computer Science, April

97

http://www.redbooks.ibm.com/redbooks/pdfs/sg247952.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247952.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg245275.pdf
http://www.ibm.com/developerworks/java/library/j-thread/index.html
http://www.ibm.com/developerworks/java/library/j-thread/index.html
http://groups.csail.mit.edu/cag/crg/papers/reps04shape.pdf
http://groups.csail.mit.edu/cag/crg/papers/reps04shape.pdf
http://www.cse.chalmers.se/edu/course/ZZ_courses_2011/EDA222/Documents/Misc/Risky_Java.pdf
http://www.cse.chalmers.se/edu/course/ZZ_courses_2011/EDA222/Documents/Misc/Risky_Java.pdf
http://www.cse.chalmers.se/edu/course/ZZ_courses_2011/EDA222/Documents/Misc/Risky_Java.pdf
http://www.cl.cam.ac.uk/~js861/thesis.pdf
http://www.cl.cam.ac.uk/~js861/thesis.pdf
http://java.sun.com/docs/books/jni/download/jni.pdf
http://java.sun.com/docs/books/jni/download/jni.pdf
http://proquest.safaribooksonline.com/9780471694663
http://proquest.safaribooksonline.com/9780471694663
http://www-ti.informatik.uni-tuebingen.de/~spruth/vorlesung_cs/CSSUM09.pdf
http://www-ti.informatik.uni-tuebingen.de/~spruth/vorlesung_cs/CSSUM09.pdf

2010. Available online at http://tobias-lib.uni-tuebingen.de/

volltexte/2010/4710/pdf/report_spruth_2010.pdf; Accessed
on 17. November 2011.

[Tan03] Andrew S. Tanenbaum. Moderne Betriebssysteme. Pearson Studium,
Munich, 2nd ed edition, 2003.

[Tra01] Greg Travis. Understanding the Java ClassLoader. Tutorial, April
2001. Available online at http://www.ibm.com/developerworks/

java/tutorials/j-classloader/j-classloader-pdf.pdf; Ac-
cessed on 6. March 2012.

[TV08] Andre L.C. Tavares and Marco Tulio Valente. A Gentle Introduc-
tion to OSGi. SIGSOFT Softw. Eng. Notes, 33:8:1–8:5, August
2008. Available online at http://homepages.dcc.ufmg.br/~mtov/

pub/2008_sen.pdf; Accessed on 6. December 2011.

[WF98] Dan S. Wallach and Edward W. Felten. Understanding Java Stack
Inspection. In In Proceedings of the 1998 IEEE Symposium on Secu-
rity and Privacy, pages 52–63, 1998. Available online at http://sip.
cs.princeton.edu/pub/oakland98.pdf; Accessed on 15. December
2011.

[Yak02] Vladimir Omar Calderon Yaksic. J-RAF – The Java Resource
Accounting Facility. Masterthesis, June 2002. Available on-
line at http://citeseerx.ist.psu.edu/viewdoc/download?doi=

10.1.1.7.742&rep=rep1&type=pdf Accessed on 29. February 2012.

98

http://tobias-lib.uni-tuebingen.de/volltexte/2010/4710/pdf/report_spruth_2010.pdf
http://tobias-lib.uni-tuebingen.de/volltexte/2010/4710/pdf/report_spruth_2010.pdf
http://www.ibm.com/developerworks/java/tutorials/j-classloader/j-classloader-pdf.pdf
http://www.ibm.com/developerworks/java/tutorials/j-classloader/j-classloader-pdf.pdf
http://homepages.dcc.ufmg.br/~mtov/pub/2008_sen.pdf
http://homepages.dcc.ufmg.br/~mtov/pub/2008_sen.pdf
http://sip.cs.princeton.edu/pub/oakland98.pdf
http://sip.cs.princeton.edu/pub/oakland98.pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.742&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.7.742&rep=rep1&type=pdf

	Introduction
	Overview
	Problem Definition
	Solution Approaches
	Document Structure

	Technologies Used
	Properties of the Java Programming Language
	The Java Runtime Environment
	Threads in Java
	Java's Platform Security

	OSGi
	OGSi Framework Architecture Overview

	Previous Java integration in CICS
	Introduction to CICS
	CICS JVM support
	CICS Open Transaction Environment

	JVM Server
	Overview
	JVM Server and OTE
	Threads
	OSGi in JVM Servers
	Subsystem Interaction

	Application Isolation Properties of JVM Servers
	Overview and Related Work
	Testing Procedure
	Closed Issues
	C1: Multitasking with Single Class Loaders
	C2: Concurrent Access to Shared Resources

	Open Issues
	I1: System Classes
	I2: Overlapping Namespaces
	I3: The Java Native Interface
	I4: Resource Exhaustion
	I5: Issues with Activator Classes
	I6: Illegal Control

	Approaches to Solving Open Issues
	Static Program Analysis
	Identifying the Access to Static Fields
	Identifying Infinite Loops

	Java and OSGi Security
	Customizing the Java Security Manager
	Using OSGi Security

	Monitoring
	CICS Services for Program Control
	Extensions of the OSGi Framework
	I-JVM
	Hardened OSGi Implementation
	Sandboxed OSGi
	OSGi RFC-0138 Multiple Frameworks In One JVM
	Applicability to CICS

	Summary and Conclusion
	Key Result
	Summary of Solutions
	Outlook

	Source Code
	I1: System Classes
	Changes to Static Fields of System Classes
	CICS Region Shutdown Using System.exit
	CICS Region Shutdown Using Runtime.halt
	Execution of OS Commands Using Runtime.exec
	Stopping Active Transactions Using the Thread Class

	I2: Overlapping Namespaces
	Class loading in wired bundles
	Threaded Access of a Shared Object (Data Race)

	I3: JNI
	Segmentation Fault Caused via JNI
	Modification of private Fields via JNI

	I4: Resource Exhaustion
	Infinite Loop
	Recursive Thread Creation
	Infinite Service Registration
	Memory Leak

	I5: Issues with Activator Classes
	Infinite Loop in the Activator
	Hanging Thread in the Activator

	I6: Illegal Control
	OSGi Bundle Context
	OGSi Bundle Fragments

	Compact Disc (CD) Contents

